ProASIC ${ }^{\text {TM }}$ 500K Family

Features and Benefits

- High Capacity
- 98,000 to 1.1 Million System Gates
- 14K to 138K Bit of Two-Port SRAM
- 210 to 623 User I/Os
- Performance
- Corner-to-Corner Delay <4 ns (Typical)
- Clock-to-Out < 7 ns
- System Performance > 200 MHz
- Low Power
- Segmented Hierarchical Routing Structure
- Small Efficient Logic Cells
- Low-Power FLASH Switches
- High Performance Routing Hierarchy
- Ultra Fast Local Network
- Efficient Long Line Network
- High Speed Bus Network
- High Performance Global Network
- Nonvolatile and Reprogrammable FLASH Technology
- Live at Power-Up
- No Configuration Boot Device Required
- Retains Programmed Design During Power-Down/ Power-Up Cycles
- I/0
- Mixed 3.3/2.5 Volt Support
- $3.3 \mathrm{~V}, 33 \mathrm{MHz}$ PCI Compliance (PCI Revision 2.2)
- Individually Selectable 3.3 V or $2.5 \mathrm{~V} \mathrm{I} / 0 \mathrm{~s}$ and Slew Rate (25, 50, and $100 \mathrm{~mA} / \mathrm{nsec}$)
- Secure Programming
- Security Bit Prevents Read Back of Programming Bit Stream
- Standard FPGA and ASIC Design Flow
- Flexibility to Choose Vendor-Specific Front-End Tools
- Provide Efficient Design Through Front-End Timing and Gate Optimization
- In-System Programming (ISP) with Silicon Sculptor
- Embedded Memory Generator for SRAMs and FIFOs
- Ensures Optimal Memory Usage
- Up to 133MHz Synchronous and Asynchronous Operation
- IEEE Std. 1149.1 (JTAG) Compliant
- Individual ProASIC Device ID
- Control and Restrict IP Delivery to Individual ProASIC Device

ProASIC Product Profile

	A500K050	A500K130	A500K180	A500K270	A500K350	A500K440	A500K510
Maximum System Gates	98,000	287,000	369,000	473,000	638,000	956,000	$1,100,000$
Typical Gates	43,000	105,000	150,000	215,000	280,000	350,000	410,000
Maximum Flip-Flops	5,376	12,800	18,432	26,880	34,816	43,776	51,200
Embedded RAM Bits	14 K	46 K	55 K	65 K	74 K	124 K	138 K
Embedded RAM Blocks (256 X 9)	6	20	24	28	32	54	60
Logic Tiles	5,376	12,800	18,432	26,880	34,816	43,776	51,200
Maximum User I/Os	210	312	368	446	496	570	623
JTAG	Yes						
PCI	Yes						
Package (by Pin Count)	208	208	208	208			
PQFP	272	272,456	456	456		580	580
PBGA		580	580	580	580	580	

General Description

The 0.25μ ProASIC 500 K family combines the advantages of ASICs with the benefits of programmable devices through its nonvolatile FLASH technology. ProASIC 500K devices make it possible to create high-density systems using existing ASIC or FPGA design flows and tools, shortening time-to-production. ASIC migration is not necessary for any volume because the family offers cost effective reprogrammable solutions, ideal
for applications in the networking, telecom, computer, and consumer markets.

The ProASIC 500 K family offers seven devices with 98 K to 1.1 M system gates and includes up to 138 K bits of embedded two-port memory. These memory blocks include hardwired decoders, I/O circuits, parity generation and detection circuits, FIFO flow generation logic, and timing and control circuits to minimize external logic gate count and complexity while maximizing flexibility and utility.

Ordering Information

Product Plan

	Speed Grade		Application	
	Std	-1*	C	I
A500K050 Device				
208-Pin Plastic Quad Flat Pack (PQFP)	\checkmark	P	P	P
272-Pin Plastic Ball Grid Array (PBGA)	\checkmark	P	P	P
A500K130 Device				
208-Pin Plastic Quad Flat Pack (PQFP)	\checkmark	P	P	P
272-Pin Plastic Ball Grid Array (PBGA)	\checkmark	P	P	P
456-Pin Plastic Ball Grid Array (PBGA)	\checkmark	P	P	P
A500K180 Device				
208-Pin Plastic Quad Flat Pack (PQFP)	\checkmark	P	P	P
456-Pin Plastic Ball Grid Array (PBGA)	\checkmark	P	P	P
580-Pin Fine Ball Grid Array (FBGA)	P	P	P	P
A500K270 Device				
208-Pin Plastic Quad Flat Pack (PQFP)	\checkmark	P	P	P
456-Pin Plastic Ball Grid Array (PBGA)	\checkmark	P	P	P
580-Pin Fine Ball Grid Array (FBGA)	P	P	P	P
A500K350 Device				
580-Pin Fine Ball Grid Array (FBGA)	P	P	P	P
A500K440 Device				
580-Pin Fine Ball Grid Array (FBGA)	P	P	P	P
A500K510 Device				
580-Pin Fine Ball Grid Array (FBGA)	P	P	P	P

Contact your Actel sales representative for package availability.

Plastic Device Resources

	User I/Os			
Device	PQFP 208-Pin	PBGA 272-Pin	PBGA 456-Pin	FBGA 580-Pin
A500K050	170	210	-	-
A500K130	170	210	312	-
A500K180	170	-	368	368
A500K270	170	-	368	446
A500K350	-	-	-	496
A500K440	-	-	-	496
A500K510	-	-	-	496

Package Definitions (Contact your Actel sales representative for product availability.)
PQFP = Plastic Quad Flat Pack, PBGA = Plastic Ball Grid Array, FBGA = Fine Ball Grid Array

Pin Description

I/O User Input/Output

The I/0 pin functions as an input, output, three-state, or bi-directional buffer. Input and output signal levels are compatible with standard TTL and CMOS specifications. Unused I/0 pins are configured as inputs with pull-up resistor.

N/C No Connect

To maintain compatibility with future Actel ProASIC products it is recommended that this pin not be connected to the circuitry on the board.

$\mathbf{G}_{x} \quad$ Global Input Pin

Low skew input pin for clock or other global signals. Input only.

GND Ground

Common ground supply voltage.
VddL Logic Array Power Supply Pin 2.5V supply voltage.

V DDP \quad I/O Pad Power Supply Pin
2.5 V or 3.3 V supply voltage.

$V_{\text {PP }} \quad$ Programming Supply Pin

This pin must be connected to $\mathrm{V}_{\mathrm{DDP}}$ during normal operation, or it can remain at 16.5 V in an ISP application. This pin must not float.

$\mathbf{V}_{\text {PN }} \quad$ Programming Supply Pin

This pin must be connected to GND during normal operation, or it can remain at -12 V in an ISP application. This pin must not float.

TMS Test Mode Select

The TMS pin controls the use of JTAG circuitry.

TCK Test Clock

Clock input pin for JTAG.

TDI Test Data In

Serial input for JTAG.

TDO Test Data Out

Serial output for JTAG.

RCK Running Clock

A free running clock is needed during programming if the programmer cannot guarantee that TCK will be uninterrupted.

Process Technology

The ProASIC 500 K family achieves its non-volatility and reprogrammability through an advanced 4LM FLASH-based 0.25μ channel length CMOS technology process. Standard CMOS design techniques are used to implement logic and control functions resulting in highly predictable performance and gate array compatibility. FLASH memory bits are
distributed throughout each device providing non-volatile, reconfigurable interconnect programming.

ProASIC 500K Architecture

The ProASIC 500K family utilizes a proprietary architecture that results in granularity comparable to gate arrays. Unlike SRAM-based FPGAs, ProASIC devices do not utilize look-up tables or architectural mapping during design. Instead, designs are directly synthesized to gates that streamline the design flow, increase design productivity, and eliminate dependencies on vendor-specific design tools.
The ProASIC 500 K device core consists of a Sea-of-Tiles ${ }^{\text {TM }}$ (Figure 1). Each logic tile can be configured into a 3-input logic function (i.e. NAND gate, D-Flip-Flop, etc.) by programming the appropriate interconnect FLASH switches. Gates and larger functions are connected together in a similar manner utilizing the four levels of routing hierarchy. FLASH switches are programmed to connect signal lines to the appropriate logic cell inputs and outputs. Dedicated high-performance lines are connected as needed for fast, low-skew clock distribution throughout the core. All core tiles are configurable as gates, muxes, latches, or flip-flops. Maximum core utilization is possible for virtually any design.
The ProASIC 500 K devices also contain embedded two-port SRAM blocks that have built in FIFO control logic. Programming options include synchronous or asynchronous operation, two-port RAM configurations, user defined depth and width, and parity selection.

Routing Resources

The routing structure of the ProASIC 500K devices is designed to provide high performance through routing flexibility. It is composed of four levels of hierarchical resources: ultra fast local resources, efficient long line resources, high speed bus resources, and high performance global networks.

The ultra fast local resources are high speed dedicated lines that allow the output of each tile to directly connect to every input of the eight closest tiles (Figure 2).
The efficient long line resources provide routing for longer distance and higher fanout connections. These resources vary in length (typically spanning 1,2 , or 4 tiles), run both vertically and horizontally, and cover the entire ProASIC device (Figure 2). Each tile can drive signals onto the efficient long line resources, and the resources can access every input of a tile. Active buffers are inserted automatically by the ASICmaster software to limit the effects of loading due to distance and fanout.

The high speed bus resources span across the entire device with minimal delay and are used to route very long or very high fanout nets. These resources run vertically and

Figure 1 • The ProASIC Device Architecture

Figure 2•High Density Interconnect

Figure 3 • High Speed Bus Resources
horizontally, and provide multiple access to each group of 16 tiles throughout the device (Figure 3).

The high performance global networks are low skew, high fanout nets that are accessible from four dedicated pins or from external logic (Figure 4). These nets are typically used to distribute clocks, resets, and other nets requiring high fanout with guaranteed minimum skew. The maximum delay on these nets is 3.5 ns, and maximum skew is 250 ps when these signals are used to drive clocks and resets on flip-flops. The global networks are implemented as four H trees, and signals can be introduced at any junction. These can be used hierarchically, with signals accessing every input on all tiles. Any portion of the global resources not required for the four primary global nets are made available to any other net requiring the distribution of high fanout signals.

Input/Output Blocks

To meet the needs of complex system designs, the ProASIC 500 K family provides devices with a large number of I/0 pins, with the A500K510 device offering up to 623 user I/0 pins. The $\mathrm{I} / 0 \mathrm{pad}$ is powered at 3.3 V , which allows each $\mathrm{I} / 0$ to be selectively configured at 2.5 V and 3.3 V compliant threshold levels. Figure 5 illustrates I/0 interfaces with other devices. All I/0s also include an ESD protection circuit. Each I/0 is tested according to the following models:

$$
\begin{array}{ll}
\begin{array}{l}
\text { Human Body Model (HBM) } \\
\text { (Per Mil Std 883 Method 3015) }
\end{array} & 1500 \mathrm{~V} \\
\text { Machine Model } & 200 \mathrm{~V}
\end{array}
$$

Figure 4 • High Performance Global Network

Figure 5-I/O Interfaces

The I/0 pads are fully configurable to provide the maximum flexibility and speed. Each pad can be configured as an input, an output, a three-state driver, or a bi-directional buffer (Figure 6). I/0 pads configured as inputs have the following features:

- Individually selectable 3.3 V or 2.5 V compliant threshold levels
- Optional pull-up resistor
$\mathrm{I} / 0$ pads configured as output have the following features:
- Individually selectable 3.3 V or 2.5 V compliant output signals
- 3.3V PCI compliant
- Ability to drive TTL and CMOS levels
- Selectable drive strengths
- Selectable slew rates
- Three-state enable (drivable from any internal or external signal)

I/0 pads configured as bi-directional have the following features:

- Individually selectable 3.3 V or 2.5 V compliant output signals and threshold levels
- 3.3V PCI compliant
- Ability to drive TTL level
- Optional pull-up resistor for inputs
- Selectable drive strengths
- Selectable slew rates
- Three-state enable

User Security and Traceability

The ProASIC 500K devices have a read-protect bit that, once programmed, prevents the programming content from being read from the part. To clear the read-protect bit, the entire part must be erased. This capability lets you secure the programmed design and prevent it from being read back and duplicated. For traceability a 12-character alphanumeric user part number field allows the user to assign a user part ID, which can subsequently be read back by the programmer.

Embedded Memory Floorplan

The embedded memory is located across the top of the device (see Figure 1). Depending upon the device, 6 to 60 (256x9) blocks of memory are available to support a variety of possible memory configurations. Each block can be programmed as an independent memory or combined, using dedicated memory routing resources, to form larger and more complex memories.

Figure 6 • I/O Block Schematic Representation

Embedded Memory Configurations

The embedded memory in the ProASIC 500 K family offers great flexibility in memory configuration. Whereas other programmable vendors typically provide single port memories that can be transformed into a two-port memory at the loss of half the memory, each ProASIC block is designed and optimized as a two-port memory (1rlw). This provides 138 K total memory bits for two-port and single port memory usage in the A 500 K 510 device.

Each memory can be configured as a FIFO or SRAM, with independent selection of synchronous or asynchronous read and write ports. However, multiple writes are not supported. Additional characteristics include programmable FIFO flags and selectable depth, and parity check and generation. Figure 7 and Figure 8 show the block diagram of the basic SRAM and FIFO blocks. These memories are designed to operate at up to 133 MHz when operated individually. Each block contains a 256 word deep by 9 -bit wide (1r, 1w) memory. The memory blocks shown in Figure 9 may be combined in parallel to form wider memories or stacked to form deeper memories. The MEMORYmaster ${ }^{\text {TM }}$ software facilitates an easy means of building wider and deeper memories for optimal memory usage. This provides optimal bit widths of 9 (1 block), 18, 36, and 72. MEMORYmaster allows any bit width up to 252 (for the A500K270 device), but if an intermediate bit width is chosen, such as 16 bits, the remaining two bits are no longer accessible for other memories. MEMORYmaster also enables optimal memory stacking in 256 word increments. However, any word depth may be compiled for up to 7,168 words.

Figure 7 • Example SRAM Block Diagrams

Figure 8 • Basic FIFO Block Diagrams

Figure 10 shows an example of optimal memory usage. Three memories have been compiled with various widths and depths using 10 blocks and consuming all 23,040 bits. Figure 11 shows an example of doubling up memory to create extra read
ports. In this example, 10 out of 60 blocks of the A500K510 are fully used, but yield an effective 6,912 bits of multiple port memories.

Figure 9 • A500K510 Memory Block Architecture

9 bit $\times 1024$ word 1r1w
Total Memory Blocks Used $=10$
Total Memory Bits = 23,040
Figure 10 • Memories with Different Width and Depth

Figure 11 • Multiport Memory Usage

Design Environment

ProASIC devices are supported by Actel's ASICmaster and MEMORYmaster software, as well as third party CAE tools. Using the standard VHDL or Verilog HDL descriptions, no special HDL design techniques, required by some FPGA vendors, are needed. This allows designers to use the same code that is used for gate arrays and standard cells for ProASIC devices. The ProASIC design flow also ensures a seamless transition to an ASIC should production volumes warrant a migration to a gate array or a standard cell product. As shown in Figure 12, with identical HDL, design tools, and flow, migration to ASICs for high volume production is greatly simplified. Conversely, migration from ASICs to ProASIC technology is also free of traditional FPGA design requirements.
MEMORYmaster automatically generates memories from inputs given by the designer. The designer can select the depth and width, usage of parity generation or check, and synchronous or asynchronous functionality of the ports. If it is a synchronous read port, the designer can choose whether the output is pipelined or transparent.

Synthesis and simulation is performed by third party CAE tools. ProASIC is currently supported by Synopsys Design Compiler, Prime Time, and VSS, Cadence BuildGates and Verilog-XL, Exemplar Spectrum, and Model Technology ModelSim. Actel's ProASIC libraries and timing models provide the database required for simulation.
Place and route is performed by Actel's ASICmaster software. Available for SunOS, Solaris, HP, and Windows NT, it accepts standard ASIC formatted netlists, performs place and route of the design into the selected device and provides post layout delay information for back annotation simulation or static timing analysis. The ASICmaster software also contains very powerful interactive layout capabilities for the experienced user.

Once the design is finalized, the programming bitstream is downloaded into the device programmer for ProASIC part programming. ProASIC 500 K devices can be programmed with the Silicon Sculptor programmer. In-System Programming is available using the Silicon Sculptor programmer and an In-System Programming header.

Figure 12 - Common Design Environment

Package Thermal Characteristics

The ProASIC 500 K family is available in a number of package types. Packages are selected based on high pin count, reliability factors, and superior thermal characteristics.
The ability of a package to conduct heat away from the silicon, through the package to the surrounding air is expressed in terms of thermal resistance. This junction-to-ambient thermal resistance is measured in degrees Celsius/Watt and is represented as Theta $\mathrm{JA}\left(\Theta_{\mathrm{JA}}\right)$. The lower this thermal resistance, the easier it is for the package to dissipate heat.
The maximum allowed power (P) for a package is a function of the maximum junction temperature (T_{J}), the maximum ambient operating temperature $\left(T_{A}\right)$, and the junction-to-ambient thermal resistance Θ_{JA}. Maximum junction temperature is the maximum temperature on the active surface of the IC and is $110^{\circ} \mathrm{C}$. P is defined as:

$$
P=\frac{T_{J}-T_{A}}{\Theta_{J A}}
$$

Θ_{JA} is a function of the rate of airflow in contact with the package, in linear feet per minute (lfpm). When the estimated power consumption exceeds the maximum allowed power, other means of cooling must be used, such as increasing the airflow rate.
The junction-to-case thermal resistance, Theta JC (Θ_{JC}), is the lowest possible thermal resistance of the device. Θ_{JC} is defined as:

$$
\Theta=\Theta_{J C}+\Theta_{C A}
$$

where
$\Theta_{\mathrm{CA}}=$ case to ambient thermal resistance

Package Type	Pin Count	$\Theta_{\text {Jc }}$	$\Theta_{\text {JA }}$ Still Air	$\Theta_{\text {JA }} \mathbf{3 0 0} \mathbf{f t} / \mathbf{m i n}$	Units
Plastic Quad Flat Pack (PQFP)	208	3.5	20	17	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Plastic Ball Grid Array (PBGA)	272	3	20	16.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Plastic Ball Grid Array (PBGA)	456	3	16.5	14.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Calculating Power Dissipation

ProASIC device power is calculated in the same manner as CMOS gate arrays and includes both a static and an active component. The active component is a function of both the number of tiles utilized and the speed. ASICmaster provides an automatic power calculator that can be used to quickly and easily calculate power dissipation. Power dissipation can also be calculated using the following formula:

$$
\mathrm{P}=\mathrm{V}_{\mathrm{DD}} \bullet \mathrm{I}_{\mathrm{DD}}
$$

where

$$
\mathrm{I}_{\mathrm{DD}}=\mathrm{I}_{\text {STATIC }}+\mathrm{I}_{\text {OUTPUT }}+\mathrm{I}_{\text {LOGIC }}
$$

and

$$
\mathrm{I}_{\text {STATIC }}=\mathrm{I}_{\text {STATIC CORE }}+\mathrm{I}_{\text {STATIC } / / 0}
$$

$\mathrm{I}_{\text {OUTPUT }}$ is the current due to the outputs switching.
$\mathrm{I}_{\text {LOGIC }}$ is the current due to the internal logic signals switching.
The static power ($\mathrm{I}_{\text {STATIC }}$) is the amount of current drawn when no inputs are switching. This is equal to the Quiescent Supply Current $\mathrm{I}_{\mathrm{DDQ}}$ specified under DC Characteristics.

Active power includes both the current due to outputs switching and the current due to internal logic signals switching.

$$
I_{\text {OUTPUT }}=\sum_{i=1}^{n}\left(C_{i} \cdot V_{i} \cdot f_{i}+I_{D C i}\right)
$$

where
$\mathrm{C}_{\mathrm{i}} \quad$ is the capacitance on the i th output pad.
$\mathrm{V}_{\mathrm{i}} \quad$ is the voltage swing on the i th output pad.
$\mathrm{f}_{\mathrm{i}} \quad$ is the switching frequency on the i th output pad.
$\mathrm{n} \quad$ is the number of outputs.
$\mathrm{I}_{\mathrm{DCi}} \quad$ is the average DC load on each pad, if any.
In most cases $\mathrm{I}_{\text {OUTPUT }}$ can be approximated by the following formula, measured in mA:

$$
\mathrm{I}_{\text {OUTPUT }}=\mathrm{n} \bullet \mathrm{C}_{\text {typ }} \bullet \mathrm{V} \bullet \mathrm{f}_{\text {avg }}
$$

where
$\mathrm{n} \quad$ is the number of active outputs.
$\mathrm{C}_{\text {typ }} \quad$ is the typical capacitance load on an output.
V is the average voltage swing.
$\mathrm{f}_{\text {avg }} \quad$ is the average switching frequency of the outputs. Typically this is less than 25% of the clock frequency.
$\mathrm{I}_{\text {LOGIC }}$ is represented by this formula, measured in mA :

$$
\mathrm{I}_{\mathrm{LOGIC}}=\mathrm{I}_{\mathrm{E}} \bullet \mathrm{G} \bullet \mathrm{f} \bullet \mathrm{~F}
$$

where
$\mathrm{I}_{\mathrm{E}} \quad$ is the effective $\mu \mathrm{A}$ per gate per MHz of the Actel parts. For the ProASIC products the value is 1.2.
G is the number of gates used in the design, in thousands.
$\mathrm{f} \quad$ is the operating frequency in MHz .
F is the fraction of devices active on each clock edge. F varies for different designs, but 0.15 is a conservative and commonly used value.
For a A500K130 design that has 47,000 used gates, 20 memory blocks, 150 active outputs, an average load of 20 pF , and a 66 MHz clock, resulting in an average switching frequency of 16.5 MHz , the power calculation appears below.

$$
\begin{array}{ll}
\mathrm{I}_{\text {OUTPUT }} & =150 \bullet 20 \bullet 10^{-12} \bullet 3.6 \bullet 16.5 \bullet 10^{6} \mathrm{~mA} \\
& =140 \mathrm{~mA} \\
\mathrm{P}_{\text {OUTPUT }} & =3.6 \mathrm{~V} \bullet 140 \mathrm{~mA}=.5 \mathrm{~W} \\
\mathrm{I}_{\text {LOGIC }} & =1.2 \bullet 47 \bullet 66 \bullet 0.15 \mathrm{~mA} \\
& =558 \mathrm{~mA}
\end{array}
$$

Therefore

$$
\begin{array}{ll}
\mathrm{I}_{\text {LOGIC }} & =558 \mathrm{~mA} \\
\mathrm{P}_{\text {Logic }} & =2.75 \mathrm{~V} \bullet 558 \mathrm{~mA} \\
& =1.5 \mathrm{~W}
\end{array}
$$

Assumptions .5 K gates per 256 x 9 block
$\mathrm{I}_{\text {memory }} \quad=1.2 \bullet .5 \bullet 66 \bullet .15 \bullet 20 \mathrm{~mA}$

$$
=118 \mathrm{~mA}
$$

$$
\mathrm{P}_{\text {memory }} \quad=2.75 \mathrm{~V} \bullet 143 \mathrm{~mA}=.326
$$

$$
\mathrm{P} \quad=1.5 \mathrm{~W}+.5 \mathrm{~W}+.32 \mathrm{~W}=2.32 \mathrm{~W}
$$

$\mathrm{I}_{\text {STATIC CORE }}$ and $\mathrm{I}_{\text {STATIC }} \mathrm{I} / 0$ are not included in this calculation.

Figure 13 • Power Consumption of a 500K Device

Operating Conditions

Absolute Maximum Ratings

Parameter	Condition	Minimum	Maximum	Units
Supply Voltage Core (VDL)		-0.3	3.0	V
Supply Voltage IO Ring ($\left.\mathrm{V}_{\mathrm{DDP}}\right)$		-0.3	4.0	V
DC Input Voltage		-0.3	$\mathrm{~V}_{\mathrm{DDP}}+0.3$	V
PCI DC Input Voltage		-0.5	$\mathrm{~V}_{\mathrm{DDP}}+0.5$	V
DC Input Clamp Current (IIK)	$\mathrm{V}_{\mathrm{IN}}<0$ or $>\mathrm{V}_{\mathrm{DD}}$	-10	+10	mA

Note: \quad Stresses beyond those listed under Absolute Maximum ratings can cause permanent damage to the device. Exposure to maximum rated conditions for extended periods can adversely affect device reliability. Operation of the device at these conditions or any others beyond those listed under Recommended Operating Conditions shown in the table below is not implied.

Temperature Maximums

Parameter	Min.	Max.	Units	Program Retention
Storage Temperature	-65	+150	${ }^{\circ} \mathrm{C}$	NA
Storage Temperature-Programmed	-65	+110	${ }^{\circ} \mathrm{C}$	20 years

Programming Limits and Recommended Operating Conditions

Product Grade	Programming Cycles	Program Retention	Junction Temperature	
			Max.	
Commercial	500	20 years	$0^{\circ} \mathrm{C}$	$110^{\circ} \mathrm{C}$
Industrial	500	20 years	$-40^{\circ} \mathrm{C}$	$110^{\circ} \mathrm{C}$

Supply Voltages

$\mathbf{V}_{\text {DDL }}$	$\mathbf{V}_{\text {DDP }}$	$\mathbf{V}_{\text {PP }}$	$\mathbf{V}_{\text {PN }}$
2.5 V	2.5 V	$2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{PP}} \leq 16.5 \mathrm{~V}$	$-12 \mathrm{~V} \leq \mathrm{V}_{\mathrm{PN}} \leq 0 \mathrm{~V}$
2.5 V	3.3 V	$2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{PP}} \leq 16.5 \mathrm{~V}$	$-12 \mathrm{~V} \leq \mathrm{V}_{\mathrm{PN}} \leq 0 \mathrm{~V}$

Recommended Operating Conditions

Parameter	Symbol	Limits
Commercial	$\mathrm{V}_{\mathrm{DDL}} \& \mathrm{~V}_{\mathrm{DDP}}$	2.30 V to 2.70 V
DC Supply Voltage (2.5V I/Os)	$\mathrm{V}_{\mathrm{DDP}}$	3.0 V to 3.6 V
DC Supply Voltage (3.3V I/Os)	T_{A}	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Operation Ambient Temperature Range	T_{J}	$\leq 110^{\circ} \mathrm{C}$
Operation Junction Temperature (maximum)		
Industrial	$\mathrm{V}_{\mathrm{DDL}} \& \mathrm{~V}_{\mathrm{DDP}}$	2.30 V to 2.70 V
DC Supply Voltage (2.5V I/Os)	$\mathrm{V}_{\mathrm{DDP}}$	3.0 V to 3.6 V
DC Supply Voltage (3.3V I/Os)	T_{A}	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Operation Ambient Temperature Range	T_{J}	$\leq 110^{\circ} \mathrm{C}$
Operation Junction Temperature (maximum)		

DC Electrical Specifications ($V_{\text {DDP }}=2.5 \mathrm{~V}$)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
$\mathrm{V}_{\text {DDP }} \mathrm{V}_{\text {DDL }}$	Supply Voltage		2.30		2.7	V
V_{OH}	Output High Voltage High Drive Low Drive	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-8.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 2.1 \\ & 2.0 \\ & 1.7 \\ & 2.1 \\ & 2.0 \\ & 1.7 \end{aligned}$			V
V_{OL}	Output Low Voltage High Drive Low Drive	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=5.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=10.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=15.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=3.5 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=5.0 \mathrm{~mA} \end{aligned}$			$\begin{aligned} & 0.2 \\ & 0.4 \\ & 0.7 \\ & 0.2 \\ & 0.4 \\ & 0.7 \end{aligned}$	V
$\mathrm{V}_{\text {IH }}$	Input High Voltage		1.7		$\mathrm{V}_{\text {DDP }}+.03$	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		-0.3		. 7	V
V_{T}	Switching Threshold			1.20		V
I_{IN}	Input Current (with pull-up)		-20		-100	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{DDQ}}$	Quiescent Supply Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {SS }}{ }^{*}$ or $\mathrm{V}_{\mathrm{DDL}}$		1.0	10	mA
$\mathrm{I}_{\text {Oz }}$	3-State Output Leakage Current	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\text {SS }}$ or $\mathrm{V}_{\mathrm{DDL}}$	-10		+10	$\mu \mathrm{A}$
IOSH	Output Short Circuit Current High High Drive Low Drive				$\begin{aligned} & -120 \\ & -100 \end{aligned}$	mA
IOSL	Output Short Circuit Current Low High Drive Low Drive				$\begin{gathered} 100 \\ 30 \end{gathered}$	mA
$\mathrm{C}_{\text {I/O }}$	I/O pad capacitance				8	pF
$\mathrm{C}_{\text {CLK }}$	Clock input pad capacitance				8	pF

Notes: All process conditions. Junction Temperature: -40 to $+110^{\circ} \mathrm{C}$.

* No pull-up resistor.

DC Electrical Specifications ($\mathrm{V}_{\text {DDP }}=3.3 \mathrm{~V}$)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
$\mathrm{V}_{\text {DDP }}$	Supply Voltage		3.0		3.6	V
$\mathrm{V}_{\text {DDL }}$	Supply Voltage, Logic Array		2.3		2.7	V
V_{OH}	Output High Voltage 3.3V I/O, High Drive 3.3V I/O, Low Drive 2.5V I/O, High Drive 2.5V I/O, Low Drive	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-3.0 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OH}}=-5.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-10.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-6.0 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OH}}=-0.5 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OH}}=-0.5 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{DDP}}-0.2 \\ 0.9 * \mathrm{~V}_{\mathrm{DDP}} \\ 2.4 \\ \mathrm{~V}_{\mathrm{DDP}}-0.2 \\ 0.9 * \mathrm{~V}_{\mathrm{DDP}} \\ 2.4 \\ 2.1 \\ 2.0 \\ 1.7 \\ 2.1 \\ 2.0 \\ 1.7 \end{gathered}$			V
V_{OL}	Output Low Voltage 3.3V I/O, High Drive 3.3V I/O, Low Drive 2.5V I/O, High Drive 2.5V I/O, Low Drive				$\begin{gathered} 0.2 \\ 0.1 * V_{\text {DDP }} \\ 0.4 \\ 0.2 \\ 0.1 * V_{\text {DDP }} \\ 0.4 \\ 0.2 \\ 0.4 \\ 0.7 \\ 0.2 \\ 0.4 \\ 0.7 \end{gathered}$	V
V_{IH}	Input High Voltage TTL LV-CMOS 2.5V Mode		$\begin{gathered} 2 \\ 0.7 * V_{\text {DDP }} \\ 1.7 \end{gathered}$		$\mathrm{V}_{\mathrm{DD}}+.3$	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage TTL LV-CMOS 2.5V Mode		-0.3		$\begin{gathered} 0.8 \\ 0.3 * V_{\text {DDP }} \\ 0.7 \end{gathered}$	V
$\mathrm{V}_{\text {T }}$	Switching Threshold	TTL LV-CMOS 2.5V Mode		$\begin{gathered} 1.5 \\ 0.5 * V_{\text {DDP }} \\ 1.2 \end{gathered}$		V
I_{IN}	Input Current CMOS \& TTL (with pull-up)		-40		-200	$\mu \mathrm{A}$
IDDQ	Quiescent Supply Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}{ }^{*}$ or V_{DD}		1.0	10	mA

Notes: Refer to PCI Specifications Revision 2.2. for 3.3V high drive, high slew-rate output pads, and all 3.3V input/clock pads.

* No pull-up resistor.

DC Electrical Specifications ($V_{\text {DDP }}=3.3 \mathrm{~V}$)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
$\mathrm{I}_{\text {Oz }}$	3-State Output Leakage Current	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{SS}}$ or V_{DD}	-10		+10	$\mu \mathrm{A}$
IOSH	Output Short Circuit Current High 3.3V I/O, High Drive 3.3V I/O, Low Drive 2.5V I/O, High Drive 2.5V I/O, Low Drive				$\begin{aligned} & -200 \\ & -140 \\ & -100 \\ & -100 \end{aligned}$	mA
IOSL	Output Short Circuit Current Low 3.3V I/O, High Drive 3.3V I/O, Low Drive 2.5V I/O, High Drive 2.5V I/O, Low Drive				$\begin{gathered} 160 \\ 50 \\ 160 \\ 50 \end{gathered}$	mA
$\mathrm{C}_{\text {I/O }}$	I/O pad capacitance				8	pF
$\mathrm{C}_{\text {CLK }}$	Clock input pad capacitance				8	pF

Notes: Refer to PCI Specifications Revision 2.2. for 3.3V high drive, high slew-rate output pads, and all 3.3V input/clock pads.

* No pull-up resistor.

Timing Characteristics

Figure 14 - Tristate Buffer Delays
Table 1 - Tristate Buffer Delays (Worst-Case Commercial Conditions, $V_{D D P}=3.0 \mathrm{~V}, V_{D D L}=2.3 \mathrm{~V}, 35 \mathrm{pF}$ load, $T_{J}=70^{\circ} \mathrm{C}$)

Macro Type	Description	Max. $\mathbf{t}_{\text {DLH }}$	Max. $\mathbf{t}_{\text {DHL }}$	Max. $\mathbf{t}_{\text {ENZH }}$	Max. $\mathbf{t}_{\text {ENZL }}$	Units
OTB33PH	3.3V, PCI Output Current, High Slew Rate	4.20	4.47	4.23	3.85	ns
OTB33PN	3.3V, PCI Output Current, Nominal Slew Rate	5.22	6.96	5.28	6.27	ns
OTB33PL	3.3V, PCI Output Current, Low Slew Rate	6.30	8.61	6.37	7.93	ns
OTB33LH	3.3V, Low Output Current, High Slew Rate	6.26	6.76	6.33	5.94	ns
OTB33LN	3.3V, Low Output Current, Nominal Slew Rate	7.70	10.80	7.78	10.38	ns
OTB33LL	3.3V, Low Output Current, Low Slew Rate	9.18	14.15	9.26	13.78	ns
OTB25HH	2.5V, High Output Current, High Slew Rate	7.65	3.95	7.70	3.62	ns
OTB25HN	2.5V, High Output Current, Nominal Slew Rate	8.77	6.24	8.85	5.87	ns
OTB25HL	2.5V, High Output Current, Low Slew Rate	10.34	7.74	10.42	7.32	ns
OTB25LH	2.5V, Low Output Current, High Slew Rate	13.43	5.71	13.46	5.30	ns
OTB25LN	2.5V, Low Output Current, Nominal Slew Rate	14.74	9.73	14.81	9.39	ns
OTB25LL	2.5V, Low Output Current, Low Slew Rate	16.17	12.86	16.23	12.51	ns
OTB25LPHH	2.5V, Low Power, High Output Current, High Slew Rate	5.40	6.02	5.43	5.21	ns
OTB25LPHN	2.5V, Low Power, High Output Current, Nominal Slew Rate	7.15	9.99	7.20	9.34	ns
OTB25LPHL	2.5V, Low Power, High Output Current, Low Slew Rate	8.83	12.82	8.87	12.24	ns
OTB25LPLH	2.5V, Low Power, Low Output Current, High Slew Rate	8.30	9.28	8.35	8.24	ns
OTB25LPLN	2.5V, Low Power, Low Output Current, Nominal Slew Rate	10.44	15.38	10.49	14.92	ns
OTB25LPLL	2.5V, Low Power, Low Output Current, Low Slew Rate	12.62	20.63	12.66	20.18	ns

Notes:

1. $t_{\text {DLH }}=$ Data-to-Pad HIGH
2. $t_{D H L}=$ Data-to-Pad LOW
3. $t_{E N Z H}=$ Enable-to-Pad, Z to HIGH
4. $t_{E N Z L}=$ Enable-to-Pad, Z to LOW

Figure 15 - Output Buffer Delays
Table 2 - Output Buffer Delays (Worst-Case Commercial Conditions, $V_{D D P}=3.0 \mathrm{~V}, V_{D D L}=2.3 \mathrm{~V}, 35 \mathrm{pF}$ load, $T_{J}=70^{\circ} \mathrm{C}$)

Macro Type	Description	Max. $\mathbf{t}_{\text {DLH }}$	Max. $\mathbf{t}_{\text {DHL }}$	Units
OB33PH	3.3V, PCI Output Current, High Slew Rate	4.20	4.47	ns
OB33PN	3.3V, PCI Output Current, Nominal Slew Rate	5.22	6.96	ns
OB33PL	3.3V, PCI Output Current, Low Slew Rate	6.30	8.61	ns
OB33LH	3.3V, Low Output Current, High Slew Rate	6.26	6.76	ns
OB33LN	3.3V, Low Output Current, Nominal Slew Rate	7.70	10.80	ns
OB33LL	3.3V, Low Output Current, Low Slew Rate	9.18	14.15	ns
OB25HH	2.5V, High Output Current, High Slew Rate	7.65	3.95	ns
OB25HN	2.5V, High Output Current, Nominal Slew Rate	8.77	6.24	ns
OB25HL	2.5V, High Output Current, Low Slew Rate	10.34	7.74	ns
OB25LH	2.5V, Low Output Current, High Slew Rate	13.43	5.71	ns
OB25LN	2.5V, Low Output Current, Nominal Slew Rate	14.74	9.73	ns
OB25LL	2.5V, Low Output Current, Low Slew Rate	16.17	12.86	ns
OB25LPHH	2.5V, Low Power, High Output Current, High Slew Rate	5.40	6.02	ns
OB25LPHN	2.5V, Low Power, High Output Current, Nominal Slew Rate	7.15	9.99	ns
OB25LPHL	2.5V, Low Power, High Output Current, Low Slew Rate	8.83	12.82	ns
OB25LPLH	2.5V, Low Power, Low Output Current, High Slew Rate	8.30	9.28	ns
OB25LPLN	2.5V, Low Power, Low Output Current, Nominal Slew Rate	10.44	15.38	ns
OB25LPLL	2.5V, Low Power, Low Output Current, Low Slew Rate	12.62	20.63	ns

[^0]

Figure 16 • Input Buffer Delays
Table 3 • Input Buffer Delays (Worst-Case Commercial Conditions, $V_{D D P}=3.0 \mathrm{~V}, V_{D D L}=2.3 \mathrm{~V}, 35 \mathrm{pF}$ load, $T_{J}=70^{\circ} \mathrm{C}$)

Macro Type	Description	Max. $\mathbf{t}_{\mathbf{I H Y H}}$	Max. $\mathbf{t}_{\mathbf{I N Y L}}$	Units
IB25	2.5 V, CMOS Input Levels, No Pull-up Resistor	2.25	0.59	ns
IB25LP	2.5 V, CMOS Input Levels, Low Power	3.10	1.47	ns
IB33	$3.3 V$, CMOS Input Levels, No Pull-up Resistor	2.14	0.99	ns

Notes:

1. $t_{\text {INYH }}=$ Input Pad-to- Y HIGH
2. $t_{\text {INYL }}=$ Input Pad-to-Y LOW

Figure 17 • Module Delays
Table 4 •Sample Macrocell Library Listing (Worst-Case Commercial Conditions, $V_{D D L}=2.3 \mathrm{~V}$, 35pF load, $T_{J}=70^{\circ} \mathrm{C}$)

Cell Name	Description	Maximum Intrinsic Delay	Minimum Setup/Hold	Units
NAND2	2-Input NAND	0.42		ns
AND2	2-Input AND	0.40		ns
NOR3	3-Input NOR	0.42		ns
MUX2L	2-1 Mux with Active Low Select	0.42		ns
OA21	2-Input OR into a 2-Input AND	0.40		ns
XOR2	2-Input Exclusive OR	0.34		ns
LDL	Active Low Latch (LH/HL)	D: 0.26/0.21	$\begin{gathered} \mathrm{t}_{\text {setup }} 0.54 \\ \mathrm{t}_{\text {hold }} 0.20 \end{gathered}$	ns
DFFL	Negative Edge-Triggered D-type Flip-Flop (LH/HL)	$\begin{aligned} & \text { CLK-Q: } \\ & 0.42 / 0.37 \end{aligned}$	$\begin{aligned} & \mathrm{t}_{\text {setup }} 0.43 \\ & \mathrm{t}_{\text {hold }} 0.20 \end{aligned}$	ns

[^1]
Embedded Memory Specifications

This section focuses on the embedded memory of the ProASIC 500 K family. It describes the SRAM and FIFO interface signals and includes timing diagrams that show the relationships of signals as they pertain to single embedded memory blocks. See Table 5.

Enclosed Timing Diagrams-SRAM Mode:

- Asynchronous RAM Read, Address Controlled, RDB=0
- Asynchronous RAM Read, RDB Controlled
- Asynchronous RAM Write
- Synchronous RAM Read, Access Timed Output Strobe
- Synchronous RAM Read, Pipeline Mode Outputs
- Synchronous RAM Write
- Synchronous Write \& Read to the Same Location
- Asynchronous Write \& Synchronous Read to the Same Location
- Asynchronous Write \& Read to the Same Location
- Synchronous Write \& Asynchronous Read to the Same Location

Table 5 • Memory Block SRAM Interface Signals

SRAM Signal	Hookup	Bits	In/Out	Description
WCLKS	Route	1	IN	Write clock used on synchronization on write side
RCLKS	Route	1	IN	Read clock used on synchronization on read side
RADDR<0:7>	Route	8	IN	Read address.
RBLKB	Route/ Config.	1	IN	Negative true read block select.
RDB	Route/ Config.	1	IN	Negative true read pulse.
WADDR<0:7>	Route	8	IN	Write address.
WBLKB	Route/ Config.	1	IN	Negative true write block select.
DI<0:8>	Route	9	IN	Input data bits <0:8>, <8> will be generated if PARGEN is true.
WRB	Route	1	IN	Negative true write pulse.
DO<0:8>	Route	9	OUT	Output data bits <0:8>
RPE	Route	1	OUT	Read parity error.
WPE	Route	1	OUT	Write parity error.
PARODD	Config.	1	IN	Selects odd parity generation/detect when high, even when low.

Notes: Not all signals shown are used in all modes. Config. = Configurable

Asynchronous RAM Read, Address Controlled, RDB=0

$\mathbf{T}_{\mathbf{J}}=0^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DDL}}=2.30 \mathrm{~V}$ to 2.70 V

${\text { Symbol } \mathbf{t}_{\mathbf{x x x}}}^{\text {Description }}$	Min.	Max.	Units	Notes	
ACYC	Read cycle time	7.5		ns	
OAA	New RDATA access from RADDR stable	7.5		ns	
OAH	Old RDATA hold from RADDR stable		3.0	ns	
RPAA	New RPE access from RADDR stable	10.0		ns	
RPAH	Old RPE hold from RADDR stable		3.0	ns	

Asynchronous RAM Read, RDB Controlled

$\mathbf{T}_{\mathbf{J}}=0^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathrm{V}_{\text {DDL }}=2.30 \mathrm{~V}$ to 2.70 V

Symbol $\mathbf{t}_{\mathbf{x x x}}$	Description	Min.	Max.	Units	Notes
ORDA	New RDATA access from RB \downarrow	7.5		ns	
ORDH	Old RDATA valid from RB \downarrow		3.0	ns	
RDCYC	Read cycle time	7.5		ns	
RDMH	RB high phase	3.0		ns	Inactive setup to new cycle
RDML	RB low phase	3.0		ns	Active
RPRDA	New RPE access from RB \downarrow	9.5		ns	
RPRDH	Old RPE valid from RB \downarrow		3.0	ns	

Asynchronous RAM Write

$\mathrm{T}_{\mathbf{J}}=0^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DDL}}=2.30 \mathrm{~V}$ to 2.70 V

Symbol $\mathrm{t}_{\mathbf{x x x}}$	Description	Min.	Max.	Units	Notes
AWRH	WADDR hold from WB \uparrow	1.0		ns	
AWRS	WADDR setup to WB \downarrow	0.5		ns	
DWRH	WDATA hold from WB \uparrow	1.5		ns	
DWRS	WDATA setup to WB \uparrow	0.5		ns	PARGEN is inactive.
DWRS	WDATA setup to WB \uparrow	2.5		ns	PARGEN is active.
WPDA	WPE access from WDATA	3.0		ns	WPE is invalid while
WPDH	WPE hold from WDATA		1.0	ns	PARGEN is active.
WRCYC	Cycle time	7.5		ns	
WRMH	WB high phase	3.0		ns	Inactive
WRML	WB low phase	3.0		ns	Active

Synchronous RAM Read, Access Timed Output Strobe

$\mathbf{T}_{\mathrm{J}}=\mathbf{0}^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathbf{V}_{\text {DDL }}=\mathbf{2 . 3 0 V}$ to $\mathbf{2 . 7 0 V}$

Symbol t $\mathbf{x x x ~}$	Description	Min.	Max.	Units	Notes
CCYC	Cycle time	7.5		ns	
CMH	Clock high phase	3.0		ns	
CML	Clock low phase	3.0		ns	
OCA	New RDATA access from CLK \uparrow	7.5		ns	
OCH	Old RDATA valid from CLK \uparrow		3.0	ns	
RACH	RADDR hold from CLK \uparrow	0.5		ns	
RACS	RADDR setup to CLK \uparrow	1.0		ns	
RDCH	RDB hold from CLK \uparrow	0.5		ns	
RDCS	RDB setup to CLK \uparrow	1.0		ns	
RPCA	New RPE access from CLK \uparrow	9.5		ns	
RPCH	Old RPE valid from CLK \uparrow		3.0	ns	

Synchronous RAM Read, Pipeline Mode Outputs

$\mathrm{T}_{\mathrm{J}}=0^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DDL}}=2.30 \mathrm{~V}$ to 2.70 V

Symbol $\mathbf{t}_{\mathbf{x x x}}$	Description	Min.	Max.	Units	Notes
CCYC	Cycle time	7.5		ns	
CMH	Clock high phase	3.0		ns	
CML	Clock low phase	3.0		ns	
OCA	New RDATA access from CLK \uparrow	2.0		ns	
OCH	Old RDATA valid from CLK \uparrow		.75	ns	
RACH	RADDR hold from CLK \uparrow	0.5		ns	
RACS	RADDR setup to CLK \uparrow	1.0		ns	
RDCH	RDB hold from CLK \uparrow	0.5		ns	
RDCS	RDB setup to CLK \uparrow	1.0		ns	
RPCA	New RPE access from CLK \uparrow	4.0		ns	
RPCH	Old RPE valid from CLK \uparrow		1.0	ns	

Synchronous RAM Write

$\mathbf{T}_{\mathbf{J}}=0^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DDL}}=\mathbf{2 . 3 0 V}$ to 2.70 V

Symbol $\mathbf{t}_{\mathbf{x x x}}$	Description	Min.	Max.	Units	Notes
CCYC	Cycle time	7.5		ns	
CMH	Clock high phase	3.0		ns	
CML	Clock low phase	3.0		ns	
DCH	WDATA hold from CLK \uparrow	0.5		ns	
DCS	WDATA setup to CLK \uparrow	1.0		ns	
WACH	WADDR hold from CLK \uparrow	0.5		ns	
WACS	WADDR setup to CLK \uparrow	1.0		ns	
WPCA	New WPE access from CLK \uparrow	3.0		ns	WPE is invalid while
WPCH	Old WPE valid from CLK \uparrow	0.5		ns	
WRCH, WBCH	WRB \& WBLKB hold from CLK \uparrow	1.0		ns	
WRCS, WBCS	WRB \& WBLKB setup to CLK \uparrow	0.5	ns		

Note: \quad On simultaneous read and write accesses to the same location WDATA is output to RDATA

Synchronous Write \& Read to the Same Location

* New data is read if WCLK \uparrow occurs before setup time. The data stored is read if WCLK \uparrow occurs after hold time.
$\mathbf{T J}=0^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DDL}}=2.30 \mathrm{~V}$ to 2.70 V

Symbol t $\mathbf{x x x}$	Description	Min.	Max.	Units	Notes
CCYC	Cycle time	7.5		ns	
CMH	Clock high phase	3.0		ns	
CML	Clock low phase	3.0		ns	
WCLKRCLKS	WCLK \uparrow to RCLK \uparrow setup time	-0.1		ns	
WCLKRCLKH	WCLK \uparrow to RCLK \uparrow hold time		7.0	ns	
OCH	Old RDATA valid from RCLK \uparrow		3.0	ns	OCA/OCH displayed for
OCA	New RDATA valid from RCLK \uparrow	7.5		ns	Access Timed Output

1. This behavior is valid for Access Timed Output and Pipelined Mode Output. Shown are the timings of an Access Timed Output.
2. During synchronous write and synchronous read access to the same location, the new write data will be read out if the active write clock edge occurs before or at the same time as the active read clock edge. The negative setup time insures this behavior for WCLK and RCLK driven by the same design signal.
3. If WCLK changes after the hold time, the data will be read.
4. A setup or hold time violation will result in unknown output data.

Asynchronous Write \& Synchronous Read to the Same Location

* New data is read if WB \downarrow occurs before setup time.

The stored data is read if WB \downarrow occurs after hold time.
$\mathbf{T J}=0^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DDL}}=2.30 \mathrm{~V}$ to 2.70 V

Symbol $\mathbf{t}_{\mathbf{x x}}$	Description	Min.	Max.	Units	Notes
CCYC	Cycle time	7.5		ns	
CMH	Clock high phase	3.0		ns	
CML	Clock low phase	3.0		ns	
WBRCLKS	WB \downarrow to RCLK \uparrow setup time	-0.1		ns	
WBRCLKH	WB \downarrow to RCLK \uparrow hold time		7.0	ns	
OCH	Old RDATA valid from RCLK \uparrow		3.0	ns	OCA/OCH displayed for
OCA	New RDATA valid from RCLK \uparrow	7.5		ns	Access Timed Output
DWRRCLKS	WDATA to RCLK \uparrow setup time	0		ns	
DWRH	WDATA to WB \uparrow hold time		1.5	ns	

1. This behavior is valid for Access Timed Output and Pipelined Mode Output. Shown are the timings of an Access Timed Output.
2. In asynchronous write and synchronous read access to the same location, the new write data will be read out if the active write signal edge occurs before or at the same time as the active read clock edge. If WB changes to low after hold time, the data will be read.
3. A setup or hold time violation will result in unknown output data.

Asynchronous Write \& Read to the Same Location

$\mathbf{T J}=0^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathrm{V}_{\text {DDL }}=2.30 \mathrm{~V}$ to 2.70 V

Symbol $\mathbf{t}_{\mathbf{x x x}}$	Description	Min.	Max.	Units	Notes
ORDA	New RDATA access from RB \downarrow	7.5		ns	
ORDH	Old RDATA valid from RB \downarrow		3.0	ns	
OWRA	New RDATA access from WB \uparrow	3.0		ns	
OWRH	Old RDATA valid from WB \uparrow		0.5	ns	
RAWRS	RB \downarrow or RADDR from WB \downarrow	5.0		ns	
RAWRH	RB \uparrow or RADDR from WB \uparrow	5.0		ns	

1. During an asynchronous read cycle, each write operation (sync. or async.) to the same location will automatically trigger a read operation which updates the read data.
2. Violation or RAWRS will disturb access to the OLD data.
3. Violation of RAWRH will disturb access to the NEWER data.

Synchronous Write \& Asynchronous Read to the Same Location

$\mathbf{T J}=\mathbf{0}^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DDL}}=\mathbf{2 . 3 0 V}$ to 2.70 V

Symbol $\mathbf{t}_{\mathbf{x x x}}$	Description	Min.	Max.	Units	Notes
ORDA	New RDATA access from RB \downarrow	7.5		ns	
ORDH	Old RDATA valid from RB \downarrow		3.0	ns	
OWRA	New RDATA access from WCLK \downarrow	3.0		ns	
OWRH	Old RDATA valid from WCLK \downarrow		0.5	ns	
RAWCLKS	RB \downarrow or RADDR from WCLK \uparrow	5.0		ns	
RAWCLKH	RB \uparrow or RADDR from WCLK \downarrow	5.0		ns	

1. During an asynchronous read cycle, each write operation (sync. or async.) to the same location will automatically trigger a read operation which updates the read data.
2. Violation of RAWCLKS will disturb access to OLD data.
3. Violation of RAWCLKH will disturb access to NEWER data.

Asynchronous FIFO Full and Empty Transitions

The asynchronous FIFO accepts writes and reads while not full or not empty respectively. When the FIFO is full, all writes are inhibited. Conversely, when the FIFO is empty, all reads are inhibited. A problem is created if the FIFO is written during the transition out of full to not full or read during the transition out of empty to not empty. The exact time at which the write (read) operation changes from inhibited to accepted after the read (write) signal which causes the transition from Full (Empty) to not Full (Empty) is indeterminate. This indeterminate period start 1 ns after the RB (WB) transition which deactivates Full (Not Empty) and ends 3ns after the RB (WB) transition, for slow cycles.

For fast cycles, the indeterminate period ends $7.5 \mathrm{~ns}-\mathrm{RDL}$ (WRL) or 3ns after the RB (WB) transition whichever is later.
The timing diagram for write is shown in Figure 18. The timing diagram for read is shown in Figure 19.

Enclosed Timing Diagrams-FIF0 Mode:

- Asynchronous FIFO Read
- Asynchronous FIFO Write
- Synchronous FIFO Read, Access Timed Output Strobe
- Synchronous FIFO Read, Pipeline Mode Outputs
- Synchronous FIFO Write
- FIFO Reset

Table 6 • Memory Block FIFO Interface Signals

FIFO Signal	Hookup	Bits	In/Out	Description
WCLKS	Route	1	IN	Write clock used on synchronization on write side
RCLKS	Route	1	IN	Read clock used on synchronization on read side
LEVEL <0:7>	Route/ Config.	8	IN	Direct configuration implements static flag logic.
RBLKB	Route/ Config.	1	IN	Negative true read block select.
RDB	Route/ Config.	1	IN	Negative true read pulse.
RESET	Route	1	IN	Negative true reset for FIFO pointers.
WBLKB	Route/ Config.	1	IN	Negative true write block select.
DI<0:8>	Route	9	IN	Input data bits <0:8>, <8> will be generated if PARGEN is true.
WRB	Route	1	IN	Negative true write pulse.
FULL, EMPTY	Route	2	OUT	FIFO flags. FULL prevents write and EMPTY prevents read.
EQTH, GEQTH	Route	2	OUT	EQTH is true when the FIFO holds (LEVEL) words. GEQTH is true when the FIFO holds (LEVEL) words or more.
DO<0:8>	Route	9	OUT	Output data bits <0:8>
RPE	Route	1	OUT	Read parity error.
WPE	Route	1	OUT	Write parity error.
LGDEP <0:2>	Config.	3	IN	Configures DEPTH of the FIFO to 2 (LGDEP+1)
PARODD	Config.	1	IN	Selects odd parity generation/detect when high, even when low.

Figure 18 • Write Timing Diagram

Figure 19 • Read Timing Diagram

Asynchronous FIFO Read

$\mathbf{T}_{\mathbf{J}}=0^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathrm{V}_{\text {DDL }}=2.30 \mathrm{~V}$ to 2.70 V

Symbol $\mathbf{t x x x}$	Description	Min.	Max.	Units	Notes
ERDH, FRDH, THRDH	Old EMPTY, FULL, EQTH, \& GETH valid hold time from RB \uparrow		0.5	ns	Empty/full/thresh are invalid from the end of hold until the new access is complete.
ERDA	New EMPTY access from RB \uparrow	3.0^{*}		ns	
FRDA	FULL \downarrow access from RB \uparrow	3.0^{*}		ns	
ORDA	New RDATA access from RB \downarrow	7.5		ns	
ORDH	Old RDATA valid from RB \downarrow		3.0	ns	
RDCYC	Read cycle time	7.5		ns	
RDWRS	WB \uparrow, clearing EMPTY, setup to RB \downarrow	$3.0^{* *}$		ns	Enabling the read operation.
	RB high phase	3.0		ns	Inhibiting the read operation.
RDH	RB low phase	3.0		ns	Active
RDL	RPRDA	9.5		ns	
RPRDH	New RPE access from RB \downarrow	Old RPE valid from RB \downarrow	4.5		ns
THRDA	EQTH or GETH access from RB \uparrow				

Notes: * At fast cycles, ERDA \& FRDA
**At fast cycles, RDWRS (for enabling read) $=$ MAX (7.5ns-WRL), 3.0ns

Asynchronous FIFO Write

$\mathbf{T}_{\mathbf{J}}=0^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathrm{V}_{\text {DDL }}=2.30 \mathrm{~V}$ to 2.70 V

Symbol $\mathbf{t}_{\mathbf{x x}}$	Description	Min.	Max.	Units	Notes
DWRH	WDATA hold from WB \uparrow	1.5		ns	
DWRS	WDATA setup to WB \uparrow	0.5		ns	PARGEN is inactive.
DWRS	WDATA setup to WB \uparrow	2.5		ns	PARGEN is active.
EWRH, FWRH, THWRH	Old EMPTY, FULL, EQTH, \& GETH valid hold time after WB \uparrow		0.5	ns	
EWRA	EMPTY \downarrow access from WB \uparrow	Empty/ful//thresh are invalid from the end of hold until the new access is complete.			
FWRA	New FULL access from WB \uparrow	3.0^{*}		ns	
THWRA	EQTH or GETH access from WB \uparrow	3.0^{*}		ns	
WPDA	WPE access from WDATA	4.5		ns	
WPDH	WPE hold from WDATA	3.0		ns	WPE is invalid while
WRCYC	Cycle time	7.5		ns	PARGEN is active.

[^2]
Synchronous FIFO Read, Access Timed Output Strobe

$\mathbf{T}_{\mathbf{J}}=0^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathrm{V}_{\text {DDL }}=2.30 \mathrm{~V}$ to 2.70 V

Symbol $\mathrm{t}_{\mathbf{x x}}$	Description	Min.	Max.	Units	Notes
CCYC	Cycle time	7.5		ns	
CMH	Clock high phase	3.0		ns	
CML	Clock low phase	3.0		ns	
ECBA	New EMPTY access from CLK \downarrow	3.0^{*}		ns	
FCBA	FULL \downarrow access from CLK \downarrow	3.0^{*}		ns	
ECBH, FCBH, THCBH	Old EMPTY, FULL, EQTH, \& GETH valid hold time from CLK \downarrow		1.0	ns	Empty/full/thresh are invalid from the end of hold until the new access is complete.
OCA	New RDATA access from CLK \uparrow	7.5		ns	
OCH	Old RDATA valid from CLK \uparrow		3.0	ns	
RDCH	RDB hold from CLK \uparrow	1.0		ns	
RDCS	RDB setup to CLK \uparrow	9.5		ns	
RPCA	New RPE access from CLK \uparrow		3.0	ns	
RPCH	Old RPE valid from CLK \uparrow	4.5		ns	
THCBA	EQTH or GETH access from CLK \downarrow				

[^3]
Synchronous FIFO Read, Pipeline Mode Outputs

$\mathbf{T}_{\mathbf{J}}=0^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DDL}}=2.30 \mathrm{~V}$ to 2.70 V

Symbol $\mathbf{t x x x}$	Description	Min.	Max.	Units	Notes
CCYC	Cycle time	7.5		ns	
CMH	Clock high phase	3.0		ns	
CML	Clock low phase	3.0		ns	
ECBA	New EMPTY access from CLK \downarrow	3.0^{\star}		ns	
FCBA	FULL \downarrow access from CLK \downarrow	3.0^{*}		ns	
ECBH, FCBH, THCBH	Old EMPTY, FULL, EQTH, \& GETH valid hold time from CLK \downarrow		1.0	ns	Empty/full/thresh are invalid from the end of hold until the new access is complete.
OCA	New RDATA access from CLK \uparrow	2.0		ns	
OCH	Old RDATA valid from CLK \uparrow		0.75	ns	
RDCH	RDB hold from CLK \uparrow	1.0		ns	
RDCS	RDB setup to CLK \uparrow	4.0		ns	
RPCA	New RPE access from CLK \uparrow		1.0	ns	
RPCH	Old RPE valid from CLK \uparrow	4.5		ns	
THCBA	EQTH or GETH access from CLK \downarrow				

Note: $\quad{ }^{*}$ At fast cycles, $E C B A \& F C B A=M A X((7.5 n s-C M S), 3.0 n s)$

Synchronous FIFO Write

$\mathrm{T}_{\mathbf{J}}=0^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathrm{V}_{\text {DDL }}=2.30 \mathrm{~V}$ to 2.70 V

Symbol t $\mathbf{x x x}$	Description	Min.	Max.	Units	Notes
CCYC	Cycle time	7.5		ns	
CMH	Clock high phase	3.0		ns	
CML	Clock low phase	3.0		ns	
DCH	WDATA hold from CLK \uparrow	0.5		ns	
DCS	WDATA setup to CLK \uparrow	1.0		ns	
FCBA	New FULL access from CLK \downarrow	3.0^{*}		ns	
ECBA	EMPTY \downarrow access from CLK \downarrow	3.0^{*}		ns	
ECBH, FCBH, THCBH	Old EMPTY, FULL, EQTH, \& GETH valid hold time from CLK \downarrow		1.0	ns	Empty/full/thresh are invalid from the end of hold until the new access is complete.
THCBA	EQTH or GETH access from CLK \downarrow	4.5		ns	
WPCA	New WPE access from CLK \uparrow	3.0		ns	WPE is invalid while PARGEN is active.
WPCH	Old WPE valid from CLK \uparrow	0.5	ns	ns	
WRCH, WBCH	WRB \& WBLKB hold from CLK \uparrow	0.5	ns		
WRCS, WBCS	WRB \& WBLKB setup to CLK \uparrow	1.0			

Note: $\quad{ }^{*} A t$ fast cycles, $E C B A \& F C B A=M A X((7.5 n s-C M H), 3.0 n s)$

FIFO Reset

*WB $=\mathrm{WRB}+\mathrm{WBLRB}$
$\mathbf{T}_{\mathbf{J}}=0^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DDL}}=2.30 \mathrm{~V}$ to 2.70 V

Symbol t $\mathbf{x x x ~}$	Description	Min.	Max.	Units	Notes
CBRSH	WCLKS or RCLKS \uparrow hold from RESETB \uparrow	1.5		ns	Synchronous mode only.
CBRSS	WCLKS or RCLKS \downarrow setup to RESETB \uparrow	1.5		ns	Synchronous mode only.
ERSA	New EMPTY \uparrow access from RESETB \downarrow	3.0		ns	
FRSA	FULL \downarrow access from RESETB \downarrow	3.0		ns	
RSL	RESETB low phase	7.5		ns	
THRSA	EQTH or GETH access from RESETB \downarrow	4.5		ns	
WBRSH	WB \downarrow hold from RESETB \uparrow	1.5		ns	Asynchronous mode only.
WBRSS	WB \uparrow setup to RESETB \uparrow	1.5		ns	Asynchronous mode only.

Package Pin Assignments

208-Pin PQFP

208-Pin PQFP

Pin No.	A500K050 Function	A500K130 Function	A500K180 Function	A500K270 Function	Pin No.	A500K050 Function	A500K130 Function	A500K180 Function	A500K270 Function
1	GND	GND	GND	GND	53	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
2	I/O	I/O	I/O	I/O	54	I/O	I/O	I/O	I/O
3	1/0	I/O	I/O	I/O	55	I/O	I/O	I/O	1/O
4	1/0	I/O	I/O	I/O	56	1/0	I/O	I/O	1/O
5	1/0	I/O	1/0	1/O	57	1/O	1/0	1/0	1/O
6	1/0	1/0	1/0	1/0	58	1/O	1/0	1/0	1/O
7	1/0	1/O	1/0	1/0	59	1/0	1/0	1/0	1/O
8	1/0	1/O	1/O	1/O	60	1/O	1/0	1/0	1/O
9	1/0	1/0	1/0	1/0	61	1/0	1/0	1/0	1/0
10	I/O	I/O	1/O	I/O	62	1/O	1/O	I/O	I/O
11	I/O	I/O	I/O	I/O	63	I/O	1/O	1/O	I/O
12	I/O	I/O	I/O	I/O	64	I/O	I/O	I/O	I/O
13	1/0	I/O	1/O	1/0	65	GND	GND	GND	GND
14	1/0	I/O	1/O	1/O	66	I/O	I/O	I/O	I/O
15	I/O	I/O	I/O	I/O	67	1/0	1/0	1/0	1/0
16	$V_{\text {DDL }}$	$\mathrm{V}_{\text {DDL }}$	$\mathrm{V}_{\text {DDL }}$	$\mathrm{V}_{\text {DDL }}$	68	1/O	1/O	1/O	1/O
17	GND	GND	GND	GND	69	1/O	1/O	1/0	1/O
18	I/O	I/O	I/O	I/O	70	I/O	I/O	I/O	I/O
19	1/0	I/O	1/0	1/O	71	$V_{\text {DDL }}$	$\mathrm{V}_{\text {DDL }}$	$V_{\text {DDL }}$	$\mathrm{V}_{\text {DDL }}$
20	1/0	I/O	1/O	1/O	72	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
21	I/O	I/O	I/O	I/O	73	I/O	I/O	I/O	I/O
22	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	74	1/O	1/0	1/O	I/O
23	I/O	I/O	I/O	I/O	75	1/O	1/0	1/0	I/O
24	1/0	1/O	1/0	1/0	76	1/0	1/0	1/0	1/O
25	G1	G1	G1	G1	77	1/0	1/0	1/0	1/0
26	G0	G0	G0	G0	78	1/0	1/0	1/0	1/0
27	I/O	I/O	I/O	I/O	79	I/O	1/O	1/O	1/0
28	I/O	I/O	I/O	I/O	80	I/O	I/O	I/O	I/O
29	GND	GND	GND	GND	81	GND	GND	GND	GND
30	I/O	I/O	I/O	I/O	82	I/O	I/O	I/O	I/O
31	1/0	1/0	1/0	1/0	83	1/0	1/0	1/O	1/0
32	1/0	1/0	1/0	1/0	84	1/0	1/0	1/0	I/O
33	1/0	1/O	1/0	I/O	85	1/0	1/O	1/O	1/O
34	1/0	I/O	1/O	1/O	86	1/0	1/O	1/O	1/O
35	I/O	I/O	I/O	I/O	87	I/O	I/O	I/O	I/O
36	$\mathrm{V}_{\text {DDL }}$	$\mathrm{V}_{\text {DDL }}$	$\mathrm{V}_{\text {DDL }}$	$\mathrm{V}_{\text {DDL }}$	88	$V_{\text {DDL }}$	$V_{\text {DDL }}$	$\mathrm{V}_{\text {DDL }}$	$V_{\text {DDL }}$
37	1/O	I/O	I/O	I/O	89	$V_{\text {DDP }}$	$V_{\text {DDP }}$	GND	$\mathrm{V}_{\text {DDP }}$
38	1/0	I/O	I/O	I/O	90	I/O	I/O	I/O	I/O
39	I/O	I/O	I/O	I/O	91	1/0	I/O	1/O	1/O
40	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$	92	I/O	1/O	1/O	I/O
41	GND	GND	GND	GND	93	I/O	I/O	I/O	1/O
42	I/O	I/O	I/O	I/O	94	I/O	1/0	1/0	1/0
43	1/0	1/0	1/0	1/0	95	1/0	1/0	1/0	1/0
44	1/0	1/0	1/0	1/0	96	I/O	1/O	I/O	1/O
45	1/0	1/0	1/0	1/0	97	GND	GND	GND	GND
46	1/0	1/O	1/0	1/O	98	I/O	I/O	I/O	I/O
47	I/O	1/O	1/O	1/O	99	1/0	1/O	1/O	1/O
48	I/O	1/O	1/O	1/0	100	1/O	1/O	1/O	I/O
49	1/0	1/O	1/0	1/0	101	I/O/TCK	I/O/TCK	I/O/TCK	I/O/TCK
50	1/0	1/0	1/0	I/O	102	I/O/TDI	I/O/TDI	I/O/TDI	I/O/TDI
51	1/O	I/O	1/O	I/O	103	I/O/TMS	I/O/TMS	I/O/TMS	1/O/TMS
52	GND	GND	GND	GND	104	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$

208-Pin PQFP (Continued)

Pin No.	$\begin{aligned} & \hline \text { A500K050 } \\ & \text { Function } \end{aligned}$	$\begin{gathered} \hline \text { A500K130 } \\ \text { Function } \end{gathered}$	$\begin{aligned} & \hline \text { A500K180 } \\ & \text { Function } \end{aligned}$	$\begin{aligned} & \hline \text { A500K270 } \\ & \text { Function } \end{aligned}$
105	GND	GND	GND	GND
106	$V_{P P}$	$V_{\text {PP }}$	$V_{\text {PP }}$	$V_{P P}$
107	$V_{\text {PN }}$	V_{PN}	$V_{\text {PN }}$	$V_{\text {PN }}$
108	I/O/TDO	I/O/TDO	I/O/TDO	I/O/TDO
109	I/O/TRSTB	I/OTRSTB	I/O/TRSTB	I/O/TRSTB
110	I/O/RCK	I/O/RCK	I/O/RCK	I/O/RCK
111	I/O	I/O	I/O	I/O
112	I/O	1/O	1/O	1/O
113	1/O	1/O	1/O	I/O
114	I/O	1/O	I/O	1/O
115	I/O	1/O	1/O	1/O
116	1/O	1/O	1/O	1/O
117	1/O	1/0	1/O	1/O
118	1/0	I/O	I/O	I/O
119	1/O	1/O	1/O	1/O
120	I/O	1/O	1/O	1/0
121	I/O	I/O	I/O	I/O
122	GND	GND	GND	GND
123	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
124	I/O	I/O	I/O	I/O
125	I/O	I/O	I/O	I/O
126	$\mathrm{V}_{\text {DDL }}$	$\mathrm{V}_{\text {DDL }}$	$\mathrm{V}_{\text {DDL }}$	$\mathrm{V}_{\text {DDL }}$
127	I/O	I/O	I/O	I/O
128	I/O	1/O	1/O	I/O
129	I/O	I/O	I/O	I/O
130	GND	GND	GND	GND
131	I/O	I/O	I/O	I/O
132	1/O	1/O	1/0	1/0
133	G2	G2	G2	G2
134	G3	G3	G3	G3
135	1/O	I/O	I/O	I/O
136	I/O	1/O	1/O	1/O
137	I/O	I/O	I/O	I/O
138	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDL }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
139	I/O	I/O	I/O	I/O
140	I/O	I/O	1/O	1/O
141	GND	GND	GND	GND
142	$\mathrm{V}_{\text {DDL }}$	$V_{\text {DDL }}$	$V_{\text {DDL }}$	$V_{\text {DDL }}$
143	I/O	I/O	I/O	I/O
144	1/O	I/O	1/O	I/O
145	I/O	1/O	1/O	I/O
146	1/O	1/O	1/O	1/O
147	1/O	1/O	1/O	1/O
148	I/O	1/O	1/O	1/0
149	I/O	1/O	1/0	1/O
150	I/O	1/O	1/0	1/O
151	I/O	1/O	1/O	1/O
152	I/O	1/O	I/O	I/O
153	1/0	1/O	I/O	1/O
154	1/0	1/O	1/O	1/O
155	I/O	I/O	I/O	I/O
156	GND	GND	GND	GND

Pin No.	A500K050 Function	A500K130 Function	A500K180 Function	A500K270 Function
157	V ${ }_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	V ${ }_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
158	I/O	I/O	1/O	I/O
159	1/O	1/O	1/0	1/0
160	I/O	1/O	1/O	1/O
161	I/O	I/O	I/O	1/O
162	GND	GND	GND	GND
163	I/O	I/O	I/O	I/O
164	I/O	1/O	1/O	1/O
165	1/O	1/O	1/O	1/O
166	1/O	1/O	1/O	1/O
167	1/O	1/0	1/O	1/0
168	1/0	1/0	1/0	1/0
169	I/O	I/O	I/O	1/O
170	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
171	$\mathrm{V}_{\text {DDL }}$	$\mathrm{V}_{\text {DDL }}$	$V_{\text {DDL }}$	$\mathrm{V}_{\text {DDL }}$
172	I/O	I/O	I/O	I/O
173	I/O	1/O	1/O	1/O
174	1/O	1/O	I/O	1/O
175	1/O	1/O	1/O	1/0
176	1/0	1/O	1/0	1/0
177	I/O	I/O	I/O	1/O
178	GND	GND	GND	GND
179	I/O	I/O	I/O	I/O
180	I/O	1/O	1/O	I/O
181	I/O	1/O	1/O	1/O
182	1/O	1/O	1/O	1/0
183	1/O	1/O	1/O	1/0
184	1/O	1/O	1/O	1/0
185	I/O	I/O	I/O	I/O
186	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
187	$\mathrm{V}_{\text {DDL }}$	$\mathrm{V}_{\text {DDL }}$	$\mathrm{V}_{\text {DDL }}$	$\mathrm{V}_{\text {DDL }}$
188	I/O	I/O	I/O	I/O
189	I/O	1/O	1/O	1/O
190	I/O	1/O	1/O	1/O
191	1/O	1/O	1/O	1/0
192	1/O	1/O	1/O	1/0
193	I/O	1/O	1/O	1/0
194	I/O	I/O	I/O	I/O
195	GND	GND	GND	GND
196	I/O	I/O	I/O	I/O
197	1/O	I/O	1/0	1/0
198	1/O	1/O	1/0	1/0
199	1/0	1/O	1/0	1/0
200	I/O	1/O	1/O	1/O
201	1/O	1/O	1/O	1/0
202	1/0	1/O	1/0	1/0
203	1/O	1/0	1/O	1/0
204	1/O	1/O	1/0	1/0
205	1/O	1/O	1/0	1/O
206	1/O	I/O	1/O	I/O
207	I/O	1/O	1/O	I/O
208	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$

Package Pin Assignments (continued)

	OOOOOOOOOOOOOOOOOOOO
w	
v	OOOOOOOOOOOOOOOOOOOO
u	00000000000000000000
T	0000 0000
R	OOOO 0000
P	OOOO OOOO
N	OOOO OOOO
м	O000 0000 0000
ᄂ	0000 0000 0000
k	OOOO OOOO OOOO
J	OOOO OOOO OOOO
н	OOOO 0000
G	OOOO OOOO
F	OOOO OOOO
E	O000 0000
D	OOOOOOOOOOOOOOOOOOOO
c	००००००००००००००००००००
в	००००००००००००००००००००
A	○OOOOOOOOOOOOOOOOOOO

272-Pin PBGA

Ext. Ball	A500K050 Function	A500K130 Function
A1	I/O	I/O
A2	I/O	I/O
A3	I/O	I/O
A4	I/O	I/O
A5	I/O	I/O
A6	I/O	I/O
A7	I/O	I/O
A8	I/O	I/O
A9	I/O	I/O
A10	I/O	I/O
A11	I/O	I/O
A12	I/O	I/O
A13	I/O	I/O
A14	I/O	I/O
A15	I/O	I/O
A16	I/O	I/O
A17	I/O	I/O
A18	I/O	I/O
A19	I/O	I/O
A20	I/O	I/O
B1	I/O	I/O
B2	I/O	I/O
B3	I/O	I/O
B4	I/O	I/O
B5	I/O	I/O
B6	I/O	I/O
B7	I/O	I/O
B8	I/O	I/O
B9	I/O	I/O
B10	I/O	I/O
B11	I/O	I/O
B12	I/O	I/O
B13	1/O	I/O
B14	I/O	I/O
B15	I/O	I/O
B16	I/O	I/O
B17	I/O	I/O
B18	I/O	I/O
B19	I/O	I/O
B20	I/O	I/O
C1	I/O	I/O
C2	I/O	I/O
C3	I/O	I/O
C4	I/O	I/O
C5	I/O	I/O
C6	I/O	I/O

Ext. Ball	A500K050 Function	A500K130 Function
C7	I/O	I/O
C8	I/O	I/O
C9	I/O	I/O
C10	I/O	I/O
C11	I/O	I/O
C12	I/O	I/O
C13	I/O	I/O
C14	I/O	I/O
C15	I/O	I/O
C16	I/O	I/O
C17	I/O	I/O
C18	I/O	I/O
C19	I/O	I/O
C20	I/O	I/O
D1	I/O	I/O
D2	I/O	I/O
D3	I/O	I/O
D4	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
D5	$V_{\text {DDP }}$	$V_{\text {DDP }}$
D6	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
D7	I/O	I/O
D8	$\mathrm{V}_{\text {DDL }}$	$\mathrm{V}_{\text {DDL }}$
D9	$V_{\text {DDL }}$	$V_{\text {DDL }}$
D10	$V_{\text {DDL }}$	$V_{\text {DDL }}$
D11	$V_{\text {DDL }}$	$V_{\text {DDL }}$
D12	$V_{\text {DDL }}$	$V_{\text {DDL }}$
D13	$V_{\text {DDL }}$	$V_{\text {DDL }}$
D14	I/O	I/O
D15	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
D16	$V_{\text {DDP }}$	$V_{\text {DDP }}$
D17	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
D18	I/O	I/O
D19	I/O	I/O
D20	I/O	I/O
E1	I/O	I/O
E2	I/O	I/O
E3	I/O	I/O
E4	$V_{\text {DDP }}$	$V_{\text {DDP }}$
E17	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
E18	I/O	I/O
E19	I/O	I/O
E20	I/O	I/O
F1	I/O	I/O
F2	I/O	I/O
F3	I/O	I/O
F4	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$

Ext. Ball	$\begin{aligned} & \text { A500K050 } \\ & \text { Function } \end{aligned}$	$\begin{gathered} \text { A500K130 } \\ \text { Function } \end{gathered}$
F17	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
F18	I/O	I/O
F19	I/O	I/O
F20	I/O	I/O
G1	I/O	I/O
G2	I/O	I/O
G3	I/O	I/O
G4	I/O	I/O
G17	I/O	I/O
G18	I/O	I/O
G19	I/O	I/O
G20	I/O	I/O
H1	I/O	I/O
H2	I/O	I/O
H3	I/O	I/O
H4	I/O	I/O
H17	I/O	I/O
H18	I/O	I/O
H19	I/O	I/O
H20	G3	G3
J1	I/O	I/O
J2	G0	G0
J3	G1	G1
J4	$V_{\text {DDL }}$	$V_{\text {DDL }}$
J9	GND	GND
J10	GND	GND
J11	GND	GND
J12	GND	GND
J17	$V_{\text {DDL }}$	$V_{\text {DDL }}$
J18	G2	G2
J19	I/O	I/O
J20	I/O	I/O
K1	I/O	I/O
K2	I/O	I/O
K3	I/O	I/O
K4	$V_{\text {DDL }}$	$V_{\text {DDL }}$
K9	GND	GND
K10	GND	GND
K11	GND	GND
K12	GND	GND
K17	$\mathrm{V}_{\text {DDL }}$	$\mathrm{V}_{\text {DDL }}$
K18	I/O	I/O
K19	I/O	I/O
K20	I/O	I/O
L1	I/O	I/O
L2	I/O	I/O

272-Pin PBGA (Continued)

Ext. Ball	A500K050 Function	A500K130 Function
L3	I/O	I/O
L4	$V_{\text {DDL }}$	$\mathrm{V}_{\mathrm{DDL}}$
L9	GND	GND
L10	GND	GND
L11	GND	GND
L12	GND	GND
L17	$V_{\text {DDL }}$	$V_{\text {DDL }}$
L18	I/O	I/O
L19	I/O	I/O
L20	I/O	I/O
M1	I/O	I/O
M2	1/0	1/0
M3	I/O	I/O
M4	$V_{\text {DDL }}$	$V_{\text {DDL }}$
M9	GND	GND
M10	GND	GND
M11	GND	GND
M12	GND	GND
M17	$V_{\text {DDL }}$	$V_{\text {DDL }}$
M18	I/O	I/O
M19	I/O	I/O
M20	1/0	1/0
N1	1/0	1/0
N2	I/O	I/O
N3	I/O	I/O
N4	$V_{\text {DDL }}$	$V_{\text {DDL }}$
N17	$V_{\text {DDL }}$	$V_{\text {DDL }}$
N18	I/O	I/O
N19	I/O	I/O
N20	I/O	I/O
P1	1/0	1/0
P2	1/0	1/0
P3	I/O	I/O
P4	$V_{\text {DDP }}$	$V_{\text {DDP }}$
P17	$V_{\text {DDP }}$	$V_{\text {DDP }}$
P18	I/O	I/O
P19	1/0	1/0
P20	1/0	I/O
R1	I/O	1/0
R2	1/0	I/O
R3	I/O	I/O
R4	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
R17	$V_{\text {DDP }}$	$V_{\text {DDP }}$
R18	I/O	I/O
R19	I/O	1/0
R20	1/O	I/O

Ext. Ball	$\begin{gathered} \hline \text { A500K050 } \\ \text { Function } \end{gathered}$	$\begin{gathered} \hline \text { A500K130 } \\ \text { Function } \end{gathered}$
T1	I/O	I/O
T2	1/0	I/O
T3	1/0	I/O
T4	$V_{\text {DDP }}$	$V_{\text {DDP }}$
T17	$V_{\text {DDP }}$	$V_{\text {DDP }}$
T18	I/O	I/O
T19	I/O	I/O
T20	1/0	I/O
U1	1/0	1/0
U2	1/0	I/O
U3	I/O	I/O
U4	$V_{\text {DDP }}$	$V_{\text {DDP }}$
U5	$V_{\text {DDP }}$	$V_{\text {DDP }}$
U6	$V_{\text {DDP }}$	$V_{\text {DDP }}$
U7	I/O	I/O
U8	$\mathrm{V}_{\text {DDL }}$	$V_{\text {DDL }}$
U9	$V_{\text {DDL }}$	$V_{\text {DDL }}$
U10	$V_{\text {DDL }}$	$V_{\text {DDL }}$
U11	$V_{\text {DDL }}$	$V_{\text {DDL }}$
U12	$V_{\text {DDL }}$	$V_{\text {DDL }}$
U13	$V_{\text {DDL }}$	$V_{\text {DDL }}$
U14	I/O	I/O
U15	$V_{\text {DDP }}$	$V_{\text {DDP }}$
U16	$V_{\text {DDP }}$	$V_{\text {DDP }}$
U17	$V_{\text {DDP }}$	$V_{\text {DDP }}$
U18	I/O/RCK	I/O/RCK
U19	I/O	I/O
U20	1/0	I/O
V1	I/O	I/O
V2	I/O	I/O
V3	I/O	I/O
V4	1/0	I/O
V5	1/0	I/O
V6	I/O	I/O
V7	I/O	I/O
V8	I/O	I/O
V9	1/0	I/O
V10	I/O	I/O
V11	I/O	I/O
V12	1/0	I/O
V13	1/0	1/0
V14	I/O	I/O
V15	I/O	I/O
V16	1/0	1/0
V17	I/O/TMS	I/O/TMS
V18	I/O/TDO	1/O/TDO

Ext. Ball	A500K050 Function	A500K130 Function
V19	I/O	I/O
V20	I/O	I/O
W1	1/0	1/0
W2	I/O	I/O
W3	1/0	1/0
W4	I/O	I/O
W5	I/O	1/0
W6	I/O	I/O
W7	I/O	I/O
W8	I/O	I/O
W9	1/0	I/O
W10	1/0	I/O
W11	I/O	I/O
W12	I/O	I/O
W13	I/O	I/O
W14	I/O	I/O
W15	I/O	I/O
W16	1/0	1/0
W17	I/O/TCK	I/O/TCK
W18	$V_{\text {PP }}$	$V_{\text {PP }}$
W19	I/O/TRSTB	I/O/TRSTB
W20	I/O	I/O
Y1	I/O	I/O
Y2	I/O	I/O
Y3	I/O	I/O
Y4	I/O	I/O
Y5	I/O	I/O
Y6	I/O	I/O
Y7	I/O	I/O
Y8	I/O	I/O
Y9	I/O	I/O
Y10	1/0	I/O
Y11	1/0	I/O
Y12	I/O	I/O
Y13	I/O	I/O
Y14	1/0	I/O
Y15	I/O	I/O
Y16	I/O	I/O
Y17	I/O	I/O
Y18	I/O/TDI	I/O/TDI
Y19	V_{PN}	V_{PN}
Y20	I/O	I/O

456-Pin PBGA

Ext. Ball	A500K130 Function	A500K180 Function	$\begin{gathered} \hline \text { A500K270 } \\ \text { Function } \end{gathered}$	Ext. Ball	A500K130 Function	A500K180 Function	A500K270 Function
A1	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$	AB11	10	I/O	I/O
A2	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	AB12	10	I/O	1/O
A3	NC	I/O	I/O	AB13	10	1/O	1/O
A4	10	1/O	1/O	AB14	10	1/0	1/O
A5	10	1/O	1/O	AB15	10	1/0	1/0
A6	NC	1/O	1/O	AB16	10	1/O	1/0
A7	10	I/O	1/O	AB17	10	1/O	I/O
A8	NC	I/O	1/O	AB18	10	I/O	1/0
A9	NC	1/0	1/O	AB19	10	I/O	I/O
A10	10	1/O	1/O	AB20	$\mathrm{V}_{\text {DDL }}$	$\mathrm{V}_{\text {DDL }}$	$\mathrm{V}_{\text {DDL }}$
A11	NC	I/O	1/0	AB21	$V_{\text {DDL }}$	$V_{\text {DDL }}$	$V_{\text {DDL }}$
A12	NC	1/O	1/O	AB22	$\mathrm{V}_{\text {DDL }}$	$\mathrm{V}_{\text {DDL }}$	$\mathrm{V}_{\text {DDL }}$
A13	10	1/O	I/O	AB23	10	I/O	I/O
A14	NC	1/0	1/O	AB24	10	1/0	1/0
A15	NC	1/O	I/O	AB25	10	1/0	1/0
A16	10	1/O	1/O	AB26	10	1/0	1/0
A17	NC	1/O	1/O	AC1	10	1/0	1/0
A18	NC	1/O	1/O	AC2	10	1/0	1/0
A19	10	1/O	1/O	AC3	10	I/O	I/O
A20	NC	1/0	1/0	AC4	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
A21	NC	1/0	1/O	AC5	10	1/O	I/O
A22	10	1/O	1/0	AC6	10	1/0	1/O
A23	NC	1/O	I/O	AC7	10	1/0	1/0
A24	NC	I/O	I/O	AC8	10	1/O	1/0
A25	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	AC9	10	1/0	1/0
A26	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$	AC10	10	I/O	I/O
AA1	10	I/O	I/O	AC11	10	1/0	1/0
AA2	10	I/O	1/O	AC12	10	1/0	I/O
AA3	10	1/O	1/0	AC13	10	1/0	1/0
AA4	10	I/O	1/O	AC14	10	1/0	I/O
AA5	$\mathrm{V}_{\text {DDL }}$	$\mathrm{V}_{\text {DDL }}$	$V_{\text {DDL }}$	AC15	10	1/0	1/0
AA22	$V_{\text {DDL }}$	$\mathrm{V}_{\text {DDL }}$	$V_{\text {DDL }}$	AC16	10	1/0	I/O
AA23	10	I/O	I/O	AC17	10	I/O	I/O
AA24	10	1/O	I/O	AC18	10	1/0	1/0
AA25	10	1/0	I/O	AC19	10	1/0	1/0
AA26	NC	1/0	1/O	AC20	10	1/O	I/O
AB1	NC	1/O	1/O	AC21	10/TMS	I/O/TMS	I/O/TMS
AB2	10	1/0	I/O	AC22	IO/TDO	I/O/TDO	I/O/TDO
AB3	10	I/O	1/0	AC23	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
AB4	10	I/O	I/O	AC24	IO/RCK	I/O/RCK	I/O/RCK
AB5	$V_{\text {DDL }}$	$\mathrm{V}_{\text {DDL }}$	$V_{\text {DDL }}$	AC25	10	I/O	I/O
AB6	$V_{\text {DDL }}$	$V_{\text {DDL }}$	$V_{\text {DDL }}$	AC26	NC	1/0	I/O
AB7	$\mathrm{V}_{\text {DDL }}$	$\mathrm{V}_{\text {DDL }}$	$V_{\text {DDL }}$	AD1	NC	1/0	1/0
AB8	10	I/O	I/O	AD2	10	I/O	I/O
AB9	10	I/O	1/0	AD3	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
AB10	10	1/O	1/0	AD4	10	1/O	1/O

Note: \quad NC = No Connection

456-Pin PBGA (Continued)

Ext. Ball	A500K130 Function	A500K180 Function	A500K270 Function
AD5	10	I/O	I/O
AD6	10	I/O	I/O
AD7	10	I/O	I/O
AD8	10	1/O	1/O
AD9	10	I/O	I/O
AD10	10	I/O	I/O
AD11	10	I/O	I/O
AD12	10	1/O	I/O
AD13	10	1/O	1/O
AD14	10	I/O	I/O
AD15	10	I/O	1/O
AD16	10	I/O	I/O
AD17	10	I/O	I/O
AD18	10	I/O	I/O
AD19	10	I/O	1/O
AD20	10	I/O	I/O
AD21	IO/TCK	I/O/TCK	I/O/TCK
AD22	V_{PP}	V_{PP}	V_{PP}
AD23	10	I/O	I/O
AD24	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
AD25	10	I/O	I/O
AD26	NC	I/O	I/O
AE1	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
AE2	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
AE3	10	I/O	I/O
AE4	10	I/O	I/O
AE5	10	I/O	I/O
AE6	10	I/O	I/O
AE7	10	I/O	I/O
AE8	10	I/O	I/O
AE9	10	I/O	1/O
AE10	10	I/O	I/O
AE11	10	I/O	I/O
AE12	10	I/O	1/O
AE13	10	I/O	I/O
AE14	10	I/O	I/O
AE15	10	I/O	I/O
AE16	10	I/O	I/O
AE17	10	I/O	I/O
AE18	10	I/O	I/O
AE19	10	I/O	I/O
AE20	10	I/O	I/O
AE21	10	I/O	I/O
AE22	10	I/O	I/O
AE23	V_{PN}	$V_{\text {PN }}$	V_{PN}
AE24	IO/TRSTB	I/O/TRSTB	I/O/TRSTB

Ext. Ball	A500K130 Function	A500K180 Function	A500K270 Function
AE25	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$
AE26	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
AF1	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
AF2	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
AF3	NC	I/O	I/O
AF4	NC	I/O	I/O
AF5	10	I/O	I/O
AF6	NC	I/O	I/O
AF7	NC	I/O	I/O
AF8	10	I/O	I/O
AF9	NC	I/O	I/O
AF10	NC	I/O	1/O
AF11	10	I/O	I/O
AF12	NC	I/O	1/0
AF13	NC	I/O	I/O
AF14	10	I/O	I/O
AF15	NC	I/O	I/O
AF16	NC	I/O	I/O
AF17	10	I/O	I/O
AF18	NC	I/O	I/O
AF19	NC	I/O	I/O
AF20	10	I/O	I/O
AF21	NC	I/O	I/O
AF22	10	I/O	I/O
AF23	IO/TDI	I/O/TDI	I/O/TDI
AF24	NC	I/O	I/O
AF25	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
AF26	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
B1	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
B2	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
B3	10	I/O	I/O
B4	10	I/O	I/O
B5	10	I/O	1/O
B6	10	I/O	I/O
B7	10	1/O	I/O
B8	10	I/O	1/O
B9	10	I/O	I/O
B10	10	1/O	I/O
B11	10	1/O	I/O
B12	10	1/O	I/O
B13	10	1/O	I/O
B14	10	I/O	I/O
B15	10	I/O	I/O
B16	10	I/O	1/O
B17	10	1/O	I/O
B18	10	I/O	1/O

Note: \quad NC = No Connection

456-Pin PBGA (Continued)

Ext. Ball	A500K130 Function	A500K180 Function	A500K270 Function
B19	10	I/O	I/O
B20	10	I/O	I/O
B21	10	I/O	I/O
B22	10	I/O	I/O
B23	10	I/O	I/O
B24	10	I/O	I/O
B25	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
B26	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
C1	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
C2	10	I/O	I/O
C3	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
C4	10	I/O	I/O
C5	10	I/O	I/O
C6	10	I/O	I/O
C7	10	I/O	I/O
C8	10	I/O	I/O
C9	10	I/O	I/O
C10	10	I/O	I/O
C11	10	I/O	I/O
C12	10	I/O	I/O
C13	10	I/O	I/O
C14	10	I/O	I/O
C15	10	I/O	I/O
C16	10	I/O	I/O
C17	10	I/O	I/O
C18	10	I/O	I/O
C19	10	I/O	I/O
C20	10	I/O	I/O
C21	10	1/O	1/O
C22	10	I/O	I/O
C23	10	I/O	I/O
C24	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
C25	10	I/O	I/O
C26	NC	I/O	I/O
D1	NC	I/O	I/O
D2	10	I/O	I/O
D3	10	I/O	I/O
D4	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
D5	10	I/O	I/O
D6	10	I/O	I/O
D7	10	I/O	I/O
D8	10	I/O	I/O
D9	10	I/O	1/O
D10	10	I/O	I/O
D11	10	I/O	I/O
D12	10	I/O	I/O

[^4]| Ext. Ball | A500K130 Function | A500K180 Function | A500K270 Function |
| :---: | :---: | :---: | :---: |
| D13 | 10 | 1/O | 1/O |
| D14 | 10 | 1/O | I/O |
| D15 | 10 | I/O | I/O |
| D16 | 10 | 1/O | I/O |
| D17 | 10 | I/O | I/O |
| D18 | 10 | I/O | I/O |
| D19 | 10 | I/O | I/O |
| D20 | 10 | I/O | I/O |
| D21 | 10 | I/O | I/O |
| D22 | 10 | I/O | I/O |
| D23 | $\mathrm{V}_{\text {DDP }}$ | $\mathrm{V}_{\text {DDP }}$ | $\mathrm{V}_{\text {DDP }}$ |
| D24 | 10 | I/O | I/O |
| D25 | 10 | I/O | I/O |
| D26 | 10 | 1/O | I/O |
| E1 | NC | 1/O | I/O |
| E2 | 10 | I/O | I/O |
| E3 | 10 | 1/O | I/O |
| E4 | 10 | I/O | I/O |
| E5 | $\mathrm{V}_{\text {DDL }}$ | $\mathrm{V}_{\text {DDL }}$ | $V_{\text {DDL }}$ |
| E6 | $V_{\text {DDL }}$ | $V_{\text {DDL }}$ | $V_{\text {DDL }}$ |
| E7 | $V_{\text {DDL }}$ | $V_{\text {DDL }}$ | $V_{\text {DDL }}$ |
| E8 | $\mathrm{V}_{\text {DDL }}$ | $\mathrm{V}_{\text {DDL }}$ | $\mathrm{V}_{\text {DDL }}$ |
| E9 | 10 | I/O | I/O |
| E10 | 10 | 1/O | I/O |
| E11 | 10 | 1/O | I/O |
| E12 | 10 | 1/O | I/O |
| E13 | 10 | I/O | I/O |
| E14 | 10 | 1/O | I/O |
| E15 | 10 | 1/O | I/O |
| E16 | 10 | I/O | I/O |
| E17 | 10 | I/O | I/O |
| E18 | 10 | 1/O | I/O |
| E19 | 10 | I/O | I/O |
| E20 | $\mathrm{V}_{\text {DDL }}$ | $\mathrm{V}_{\text {DDL }}$ | $\mathrm{V}_{\text {DDL }}$ |
| E21 | $V_{\text {DDL }}$ | $\mathrm{V}_{\text {DDL }}$ | $V_{\text {DDL }}$ |
| E22 | $\mathrm{V}_{\text {DDL }}$ | $\mathrm{V}_{\text {DDL }}$ | $\mathrm{V}_{\text {DDL }}$ |
| E23 | 10 | I/O | I/O |
| E24 | 10 | I/O | I/O |
| E25 | 10 | I/O | I/O |
| E26 | 10 | I/O | I/O |
| F1 | 10 | I/O | I/O |
| F2 | 10 | I/O | I/O |
| F3 | 10 | I/O | I/O |
| F4 | 10 | I/O | I/O |
| F5 | $\mathrm{V}_{\text {DDL }}$ | $\mathrm{V}_{\text {DDL }}$ | $\mathrm{V}_{\text {DDL }}$ |
| F22 | $V_{\text {DDL }}$ | $V_{\text {DDL }}$ | $V_{\text {DDL }}$ |

456-Pin PBGA (Continued)

Ext. Ball	A500K130 Function	A500K180 Function	A500K270 Function
F23	10	I/O	1/O
F24	10	I/O	I/O
F25	10	1/O	I/O
F26	NC	I/O	I/O
G1	NC	I/O	I/O
G2	10	I/O	I/O
G3	10	I/O	I/O
G4	10	I/O	I/O
G5	$\mathrm{V}_{\text {DDL }}$	$\mathrm{V}_{\text {DDL }}$	$\mathrm{V}_{\text {DDL }}$
G22	$V_{\text {DDL }}$	$\mathrm{V}_{\text {DDL }}$	$V_{\text {DDL }}$
G23	10	I/O	I/O
G24	10	I/O	I/O
G25	10	I/O	I/O
G26	10	I/O	I/O
H1	NC	I/O	I/O
H2	10	I/O	I/O
H3	10	I/O	I/O
H4	10	I/O	I/O
H5	$\mathrm{V}_{\text {DDL }}$	$\mathrm{V}_{\text {DDL }}$	$\mathrm{V}_{\text {DDL }}$
H22	$\mathrm{V}_{\text {DDL }}$	$\mathrm{V}_{\text {DDL }}$	$\mathrm{V}_{\text {DDL }}$
H23	10	I/O	I/O
H24	10	I/O	I/O
H25	10	I/O	I/O
H26	NC	I/O	I/O
J1	10	I/O	I/O
J2	10	I/O	I/O
J3	10	I/O	I/O
J4	10	I/O	I/O
J5	10	I/O	I/O
J22	10	I/O	I/O
J23	10	I/O	I/O
J24	10	I/O	1/O
J25	10	I/O	I/O
J26	NC	I/O	I/O
K1	NC	1/O	I/O
K2	10	I/O	I/O
K3	10	I/O	I/O
K4	10	I/O	I/O
K5	10	I/O	I/O
K22	10	I/O	I/O
K23	10	I/O	I/O
K24	10	I/O	1/O
K25	10	I/O	1/O
K26	10	I/O	I/O
L1	NC	I/O	I/O
L2	10	I/O	I/O

Ext. Ball	A500K130 Function	A500K180 Function	A500K270 Function
L3	10	I/O	I/O
L4	10	I/O	I/O
L5	10	I/O	I/O
L11	GND	GND	GND
L12	GND	GND	GND
L13	GND	GND	GND
L14	GND	GND	GND
L15	GND	GND	GND
L16	GND	GND	GND
L22	10	I/O	I/O
L23	10	I/O	I/O
L24	10	I/O	I/O
L25	10	I/O	1/O
L26	NC	I/O	1/O
M1	G2	G1	G1
M2	G1	G0	G0
M3	10	I/O	I/O
M4	10	I/O	I/O
M5	10	I/O	I/O
M11	GND	GND	GND
M12	GND	GND	GND
M13	GND	GND	GND
M14	GND	GND	GND
M15	GND	GND	GND
M16	GND	GND	GND
M22	G4	G3	G3
M23	10	I/O	I/O
M24	10	I/O	I/O
M25	10	I/O	I/O
M26	NC	I/O	1/O
N1	NC	I/O	I/O
N2	10	I/O	I/O
N3	10	I/O	I/O
N4	10	I/O	I/O
N5	10	I/O	I/O
N11	GND	GND	GND
N12	GND	GND	GND
N13	GND	GND	GND
N14	GND	GND	GND
N15	GND	GND	GND
N16	GND	GND	GND
N22	10	I/O	I/O
N23	G3	G2	G2
N24	10	I/O	I/O
N25	10	I/O	I/O
N26	10	I/O	I/O

Note: \quad NC = No Connection

456-Pin PBGA (Continued)

Ext. Ball	A500K130 Function	A500K180 Function	A500K270 Function	Ext. Ball	A500K130 Function	A500K180 Function	A500K270 Function
P1	NC	I/O	I/O	T23	10	I/O	I/O
P2	10	I/O	I/O	T24	10	I/O	I/O
P3	10	1/O	1/0	T25	10	1/0	1/O
P4	10	1/O	1/O	T26	10	1/O	1/O
P5	10	I/O	I/O	U1	NC	1/O	1/O
P11	GND	GND	GND	U2	10	1/O	1/O
P12	GND	GND	GND	U3	10	1/O	1/O
P13	GND	GND	GND	U4	10	1/O	1/O
P14	GND	GND	GND	U5	10	1/O	1/O
P15	GND	GND	GND	U22	10	1/O	1/O
P16	GND	GND	GND	U23	10	I/O	I/O
P22	10	I/O	I/O	U24	10	1/O	1/O
P23	10	I/O	I/O	U25	10	I/O	I/O
P24	10	1/O	1/0	U26	NC	1/0	I/O
P25	10	I/O	I/O	V1	10	1/O	1/O
P26	NC	1/O	1/0	V2	10	1/0	1/O
R1	10	1/O	1/0	V3	10	1/O	I/O
R2	10	1/0	1/0	V4	10	1/0	1/0
R3	10	1/O	1/O	V5	10	1/O	I/O
R4	10	I/O	1/O	V22	10	1/O	1/O
R5	10	I/O	I/O	V23	10	I/O	I/O
R11	GND	GND	GND	V24	10	I/O	1/O
R12	GND	GND	GND	V25	10	1/O	1/0
R13	GND	GND	GND	V26	NC	1/O	I/O
R14	GND	GND	GND	W1	NC	1/O	I/O
R15	GND	GND	GND	W2	10	1/O	1/O
R16	GND	GND	GND	W3	10	1/O	1/O
R22	10	I/O	I/O	W4	10	I/O	I/O
R23	10	1/0	1/0	W5	$\mathrm{V}_{\text {DDL }}$	$V_{\text {DDL }}$	$\mathrm{V}_{\text {DDL }}$
R24	10	1/O	1/0	W22	$V_{\text {DDL }}$	$V_{\text {DDL }}$	$\mathrm{V}_{\text {DDL }}$
R25	10	1/O	1/0	W23	10	I/O	I/O
R26	NC	1/O	1/O	W24	10	1/O	I/O
T1	NC	1/O	1/0	W25	10	1/O	1/O
T2	10	I/O	I/O	W26	10	I/O	I/O
T3	10	I/O	I/O	Y1	NC	1/O	I/O
T4	10	1/0	1/0	Y2	10	1/O	I/O
T5	10	I/O	I/O	Y3	10	I/O	I/O
T11	GND	GND	GND	Y4	10	I/O	I/O
T12	GND	GND	GND	Y5	$\mathrm{V}_{\text {DDL }}$	$\mathrm{V}_{\text {DDL }}$	$\mathrm{V}_{\text {DDL }}$
T13	GND	GND	GND	Y22	$\mathrm{V}_{\text {DDL }}$	$V_{\text {DDL }}$	$\mathrm{V}_{\text {DDL }}$
T14	GND	GND	GND	Y23	10	1/O	1/O
T15	GND	GND	GND	Y24	10	I/O	1/0
T16	GND	GND	GND	Y25	10	1/0	1/O
T22	10	I/O	1/O	Y26	NC	1/0	1/O

Note: \quad NC = No Connection

Package Mechanical Drawings

208-Pin PQFP

Detail A

Plastic Quad Flat Packages (PQFP)

Jedec Equiv	PQFP 208 MO-143			
Dimension	Min.	Nom.	Max.	
A		3.70	4.10	
A1	0.25	0.38		
A2	3.20	3.40	3.60	
b	0.17		0.27	
c	0.09		0.20	
ccc			0.10	
D/E	30.25	30.60	30.85	
D1/E1	27.90	28.00	28.10	
e	0.50 BSC			
L	0.50	0.60	0.75	
Theta	0			
Diameter	19.82	20.32	20.82	

Notes:

1. All dimensions are in millimeters.
2. BSC-Basic Spacing between Centers.

Package Mechanical Drawings (Continued)

272-Pin PBGA

Bottom View

Detail A

Package Mechanical Drawings (Continued)

456-Pin PBGA

Detail A

Plastic Ball Grid Array (PBGA)

JEDEC Equivalent	PBGA272			PBGA456		
Dimension	Min.	Nom.	Max.	Min.	Nom.	Max.
A	2.18	2.33	2.50	2.20	2.33	2.50
A1	0.50	0.60	0.70	0.50	0.60	0.70
A2	1.15	1.17	1.19	1.12	1.17	1.19
aaa			0.15			0.15
bbb			0.20			0.20
b	0.60	0.75	0.90	0.60	0.75	0.90
C	0.53	0.56	0.61	0.51	0.56	0.61
ccc			0.25			0.25
D	26.80	27.00	27.20	34.80	35.00	35.20
D1	24.13 BSC			31.75 BSC		
D2	23.90	24.00	24.10	29.80	30.00	30.20
E	26.80	27.00	27.20	34.80	35.00	35.20
E1	24.13 BSC			31.075 BSC		
E2	23.90	24.00	24.10	29.80	30.00	30.20
e	1.27 typ.			1.27 typ.		
Theta	30° typ.			30° typ.		

Notes:

1. All dimensions are in millimeters
2. BSC-Basic Spacing between Centers

Actel

Actel

Actel and the Actel logo are registered trademarks of Actel Corporation.
ProASIC, ASICmaster, and MEMORYmaster are trademarks of GateField Corporation.
All other trademarks are the property of their owners.

http://www.actel.com

Actel Europe Ltd.

Daneshill House, Lutyens Close
Basingstoke, Hampshire RG24
8AG
United Kingdom
Tel: +44.(0)1256.305600
Fax: +44.(0)1256.355420

Actel Corporation

955 East Arques Avenue
Sunnyvale, California 94086
USA
Tel: 408.739.1010
Fax: 408.739.1540

Actel Asia-Pacific

EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Tel: +81.(0)3.3445.7671
Fax: +81.(0)3.3445.7668

[^0]: Notes:

 1. $t_{D L H}=$ Data-to-Pad HIGH
 2. $t_{D H L}=$ Data-to-Pad LOW
[^1]: Note: Assumes two standard loads.

[^2]: Notes: * At fast cycles, EWRA, FWRA = MAX((7.5ns-WRL), 3.0ns)
 **At fast cycles, WWRDS (for enabling write) $=$ MAX (7.5ns-RDL), 3.0ns

[^3]: Note: $\quad{ }^{*}$ At fast cycles, ECBA \& FCBA $=\operatorname{MAX}((7.5 . n s-C M H)$, 3.0ns $)$

[^4]: Note: \quad NC = No Connection

