ACT" 2
 FamilyFPGAs

Features

- Up to 8000 Gate Array Gates (20,000 PLD equivalent gates)
- Replaces up to 200 TTL Packages
- Replaces up to eighty 20 -Pin $\mathrm{PAL}{ }^{\circledR}$ Packages
- Design Library with over 500 Macro Functions
- Single-Module Sequential Functions
- Wide-Input Combinatorial Functions
- Up to 1232 Programmable Logic Modules
- Up to 998 Flip-Flops

Product Family Profile

- Datapath Performance at 105 MHz
- 16-Bit Accumulator Performance to 39 MHz
- Two In-Circuit Diagnostic Probe Pins Support Speed Analysis to 50 MHz
- Two High-Speed, Low-Skew Clock Networks
- I/O Drive to 10 mA
- Nonvolatile, User Programmable
- Logic Fully Tested Prior to Shipment
- 1.0-micron CMOS Technology

Device	A1225A	A1240A	A1280A
Capacity Gate Array Equivalent Gates PLD Equivalent Gates TTL Equivalent Packages 20-Pin PAL Equivalent Packages	$\begin{array}{r} 2,500 \\ 6,250 \\ 63 \\ 25 \end{array}$	$\begin{array}{r} 4,000 \\ 10,000 \\ 100 \\ 40 \end{array}$	$\begin{array}{r} 8,000 \\ 20,000 \\ 200 \\ 80 \end{array}$
Logic Modules S-Modules C-Modules	$\begin{aligned} & 451 \\ & 231 \\ & 220 \end{aligned}$	$\begin{aligned} & 684 \\ & 348 \\ & 336 \end{aligned}$	$\begin{array}{r} 1,232 \\ 624 \\ 608 \end{array}$
Flip-Flops (maximum)	382	568	998
Routing Resources Horizontal Tracks/Channel Vertical Tracks/Channel PLICE Antifuse Elements	$\begin{array}{r} 36 \\ 15 \\ 250,000 \end{array}$	$\begin{array}{r} 36 \\ 15 \\ 400,000 \end{array}$	$\begin{array}{r} 36 \\ 15 \\ 750,000 \end{array}$
User I/Os (maximum)	83	104	140
Packages ${ }^{1}$	$\begin{gathered} 100 \text { CPGA } \\ 100 \text { PQFP } \\ 100 \text { VQFP } \\ 84 \text { PLCC } \end{gathered}$	$\begin{array}{r} \hline 132 \text { CPGA } \\ 144 \text { PQFP } \\ 176 \text { TQFP } \\ 84 \text { PLCC } \end{array}$	$\begin{array}{r} \hline 176 \text { CPGA } \\ 160 \text { PQFP } \\ 176 \text { TQFP } \\ 84 \text { PLCC } \\ 172 \text { CQFP } \end{array}$
Performance ${ }^{2}$ 16-Bit Prescaled Counters 16-Bit Loadable Counters 16-Bit Accumulators	$\begin{array}{r} 105 \mathrm{MHz} \\ 70 \mathrm{MHz} \\ 39 \mathrm{MHz} \end{array}$	$\begin{array}{r} 100 \mathrm{MHz} \\ 69 \mathrm{MHz} \\ 38 \mathrm{MHz} \end{array}$	85 MHz 67 MHz 36 MHz

Notes:

1. Seeproduct plan on page $1-171$ for packageavai lability.
2. Performance is based on ' -2 ' speed devices at commercial worst-case operating conditions using PREP Benchmarks, Suite \#1, Version 1.2, dated 3-28-93, any analysis is not endorsed by PREP.

Description

The ACT ${ }^{\text {m }} 2$ family represents Actel's second generation of field programmable gate arrays (FPGAs). The ACT 2 family presents a two-module architecture, consisting of C-modules and S-modules. These modules are optimized for both combinatorial and sequential designs. Based on Actel's patented channeled array architecture, the ACT 2 family provides significant enhancements to gate density and performance while maintaining downward compatibility with the ACT 1 design environment and upward compatibility with the ACT 3 design environment. The devices are implemented in silicon gate, $1.0-\mu \mathrm{m}$, two-level metal CMOS, and employ

Actel's PLICE ${ }^{\circledR}$ antifuse technology. This revolutionary architecture offers gate array design flexibility, high performance, and fast time-to-production with user programming. The ACT 2 family is supported by the Designer and Designer Advantage Systems, which offers automatic pin assignment, validation of electrical and design rules, automatic placement and routing, timing analysis, user programming, and diagnostic probe capabilities. The systems are supported on the following platforms: $386 / 486^{\mathrm{m}}$ PC, Sun ${ }^{\text {m" }}$, and $\mathrm{HP}^{\text {m" }}$ workstations. The systems provide CAE interfaces to the following design environments: Cadence, Viewlogic ${ }^{\circledR}$, Mentor Graphics ${ }^{\circledR}$, and OrCAD ${ }^{m m}$.

Ordering Information

A1280

Product Plan ${ }^{1}$

	Speed Grade*			Application			
	Std	-1	-2	C	I	M	B
A1225A Device							
100-pin Ceramic Pin Grid Array (PG)	\checkmark	ν	\checkmark	\checkmark	-	-	-
100-pin Plastic Quad Flatpack (PQ) 100-pin Very Thin (1.0 mm) Quad Flatpack	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-
(VQ)	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-
84-pin Plastic Leaded Chip Carrier (PL)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-
A1240A Device							
132-pin Ceramic Pin Grid Array (PG)	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark	\checkmark
176-pin Thin (1.4 mm) Quad Flatpack (TQ)	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-
144-pin Plastic Quad Flatpack (PQ)	\checkmark	ν	\checkmark	\checkmark	\checkmark	-	-
84-pin Plastic Leaded Chip Carrier (PL)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-
A1280A Device							
176-pin Ceramic Pin Grid Array (PG)	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark	\checkmark
176-pin Thin (1.4 mm) Quad Flatpack (TQ)	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-
160-pin Plastic Quad Flatpack (PQ)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-
172-pin Ceramic Quad Flatpack (CQ)	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark	\checkmark
Applications: $C=$ Commercial Availability: $I=$ Industrial $M=$ Military $B=$ MIL-STD-883	$\begin{aligned} & V= \\ & P= \\ & -= \end{aligned}$	able ned Plan	* Spe		$\begin{aligned} & \text { ox. } 1 \\ & \text { ox. } 2 \end{aligned}$	ter th	ndard ndard

Note:

1. Please consult Acted representati ves for current availability.

Device Resources

			User I/Os									
Device Series	Logic Modules	Gates	176-pin	CPGA 132-pin	100-pin	160-pin	PQFP 144-pin	100-pin	$\begin{aligned} & \text { PLCC } \\ & \text { 84-pin } \end{aligned}$	CQFP 172-pin	TQFP 176-pin	VQFP 100-pin
A1225A	451	2500	-	-	83	-	-	83	72	-	-	83
A1240A	684	4000	-	104	-	-	104	-	72	-	104	-
A1280A	1232	8000	140	-	-	125	-	-	72	140	140	-

Pin Description
CLKA Clock A (Input)
TTL Clock input for clock distribution networks. The Clock input is buffered prior to clocking the logic modules. This pin can also be used as an I/O.

CLKB
Clock B (Input)
TTL Clock input for clock distribution networks. The Clock input is buffered prior to clocking the logic modules. This pin can also be used as an I/O.

DCLK Diagnostic Clock (Input)
TTL Clock input for diagnostic probe and device programming. DCLK is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

GND
Ground
LOW supply voltage.
I/O Input/Output (Input, Output)
The I/O pin functions as an input, output, three-state, or bidirectional buffer. Input and output levels are compatible with standard TTL and CMOS specifications. Unused I/O pins are automatically driven LOW by the ALS software.

MODE Mode (Input)
The MODE pin controls the use of multifunction pins (DCLK, PRA, PRB, SDI). When the MODE pin is HIGH, the special functions are active. When the MODE pin is LOW, the pins function as I/Os. To provide Actionprobe capability, the MODE pin should be terminated to GND through a 10K resistor so that the MODE pin can be pulled high when required.

NC No Connection
This pin is not connected to circuitry within the device.

PRA
Probe A (Output)
The Probe A pin is used to output data from any user-defined design node within the device. This independent diagnostic pin is used in conjunction with the Probe B pin to allow real-time diagnostic output of any signal path within the device. The Probe A pin can be used as a user-defined I/O when debugging has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality. PRA is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.
PRB Probe B (Output)
The Probe B pin is used to output data from any user-defined design node within the device. This independent diagnostic pin is used in conjunction with the Probe A pin to allow real-time diagnostic output of any signal path within the device. The Probe B pin can be used as a user-defined I/O when debugging has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality. PRB is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

```
SDI Serial Data Input (Input)
```

Serial data input for diagnostic probe and device programming. SDI is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.
$V_{\text {CC }} \quad 5 \mathrm{~V}$ Supply Voltage
HIGH supply voltage.

Absolute Maximum Ratings ${ }^{1}$

Free air temperature range

Symbol	Parameter	Limits	Units
V_{CC}	DC Supply Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{IO}	I / O Source/Sink Current 2	± 20	mA
$\mathrm{~T}_{\mathrm{STG}}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

Notes:

1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Device should not be operated outside the Recommended Operating Conditions.
2. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater than $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ or less than GND - 0.5 V , the internal protection diodewill beforward biased and can draw excessive current.

Recommended Operating Conditions

Parameter	Commercial	Industrial	Military	Units
Temperature Range ${ }^{1}$	0 to +70	$\begin{gathered} -40 \text { to } \\ +85 \end{gathered}$	$\begin{aligned} & -55 \text { to } \\ & +125 \end{aligned}$	${ }^{\circ} \mathrm{C}$
Power Supply Tolerance	± 5	± 10	± 10	\%V CC

Notes:

1. Ambient temperature $\left(T_{A}\right)$ is used for commercial and industrial; case temperature $\left(T_{C}\right)$ is used for military.

Electrical Specifications

Symbol	Commercial		Industrial		Military		Units
	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{V}_{\mathrm{OH}}{ }^{1}$	2.4						V
	3.84						V
			3.7		3.7		V
$\mathrm{V}_{\mathrm{OL}}{ }^{1}$		0.5					V
		0.33		0.40		0.40	V
$\mathrm{V}_{\text {IL }}$	-0.3	0.8	-0.3	0.8	-0.3	0.8	V
V_{IH}	2.0	$\mathrm{V}_{\mathrm{CC}}+0.3$	2.0	$\mathrm{V}_{\mathrm{CC}}+0.3$	2.0	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
Input Transition Time $\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}{ }^{2}$		500		500		500	ns
C_{IO} I/O Capacitance ${ }^{2,3}$		10		10		10	pF
Standby Current, ICC^{4} (typical $=1 \mathrm{~mA}$)		2		10		20	mA
Leakage Current ${ }^{5}$	-10	10	-10	10	-10	10	$\mu \mathrm{A}$

Notes:

1. Only oneoutput tested at a time. $\mathrm{V}_{\mathrm{CC}}=\mathrm{min}$.
2. Not tested, for information only.
3. Includes worst-case 176 CPGA package capacitance. $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$.
4. All outputs unloaded. All inputs $=V_{C C}$ or $G N D$, typical $I_{C C}=1 \mathrm{~mA}$. $I_{C C}$ limit includes $I_{P P}$ and $I_{S V}$ during normal operation.
5. $\quad \mathrm{V}_{\text {OUT }}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$ or GND .

Package Thermal Characteristics
The device junction to case thermal characteristic is $\theta j \mathrm{c}$, and the junction to ambient air characteristic is θj a. The thermal characteristics for θ ja are shown with two different air flow rates.

Maximum junction temperature is $150^{\circ} \mathrm{C}$.
A sample calculation of the absolute maximum power dissipation allowed for a PQFP 160-pin package at commercial temperature is as follows:

$$
\frac{\text { Max. junction temp. }\left({ }^{\circ} \mathrm{C}\right)-\text { Max. commercial temp. }}{\theta \mathrm{ja}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)}=\frac{150^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}}{33^{\circ} \mathrm{C} / \mathrm{W}}=2.4 \mathrm{~W}
$$

Package Type	Pin Count	$\theta \mathrm{j} \mathbf{C}$	$\begin{gathered} \text { Өja } \\ \text { Still Air } \end{gathered}$	θ ja $300 \mathrm{ft} / \mathrm{min}$	Units
Ceramic Pin Grid Array	100	5	35	17	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	132	5	30	15	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	176	8	23	12	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Ceramic Quad Flatpack	172	8	25	15	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Plastic Quad Flatpack ${ }^{1}$	100	13	48	40	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	144	15	40	32	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	160	15	38	30	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Plastic Leaded Chip Carrier ${ }^{2}$	84	12	37	28	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Very Thin Quad Flatpack ${ }^{3}$	100	12	43	35	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thin Quad Flatpack ${ }^{4}$	176	15	32	25	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Notes: (Maximum Power in Still Air)

1. Maximum Power Dissi pati on for PQFP packages are 1.9 Watts (100-pin), 2.3 Watts (144 -pin), and 2.4 Watts (160 -pin).
2. Maximum Power Dissipation for PLCC packages is 2.7 Watts.
3. Maximum Power Dissi pation for VQFP packages is 2.3 Watts.
4. Maximum Power Dissipation for TQFP packages is 3.1 Watts.

Power Dissipation

$$
\begin{gathered}
P=\left[I_{\mathrm{CC}} \text { standby }+I_{\mathrm{Cc}} \mathrm{Cactive}\right] * V_{\mathrm{CC}}+I_{\mathrm{OL}} * V_{\mathrm{OL}} * N+ \\
\mathrm{IOH}_{\mathrm{OH}} *\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{OH}}\right) * \mathrm{M}
\end{gathered}
$$

Where:
I_{CC} standby is the current flowing when no inputs or outputs are changing.
$I_{\text {CC }}$ active is the current flowing due to CMOS switching.
$I_{0 L}, I_{\text {он }}$ are TTL sink/source currents.
$\mathrm{V}_{\mathrm{OL}}, \mathrm{V}_{\text {OH }}$ are TTL level output voltages.
N equals the number of outputs driving TTL loads to V_{OL}.
M equals the number of outputs driving TTL loads to V_{OH}.
An accurate determination of N and M is problematical because their values depend on the family type, design details, and on the system I / O. The power can be divided into two components: static and active.

Static Power Component

Actel FPGAs have small static power components that result in lower power dissipation than PALs or PLDs. By integrating multiple PALs/PLDs into one FPGA, an even greater reduction in board-level power dissipation can be achieved.

The power due to standby current is typically a small component of the overall power. Standby power is calculated below for commercial, worst case conditions.

$I_{C C}$	$V_{C C}$	Power
2 mA	5.25 V	10.5 mW

The static power dissipated by TTL loads depends on the number of outputs driving high or low and the DC load current. Again, this value is typically small. For instance, a 32-bit bus sinking 4 mA at 0.33 V will generate 42 mW with all outputs driving low, and 140 mW with all outputs driving high. The actual dissipation will average somewhere between as I/Os switch states with time.

Active Power Component

Power dissipation in CMOS devices is usually dominated by the active (dynamic) power dissipation. This component is frequency dependent, a function of the logic and the external I/O. Active power dissipation results from charging internal chip capacitances of the interconnect, unprogrammed antifuses, module inputs, and module outputs, plus external capacitance due to PC board traces and load device inputs. An additional component of the active power dissipation is the totem-pole current in CMOS transistor pairs. The net
effect can be associated with an equivalent capacitance that can be combined with frequency and voltage to represent active power dissipation.

Equivalent Capacitance
The power dissipated by a CMOS circuit can be expressed by the Equation 1.

$$
\begin{equation*}
\text { Power (uW) }=\mathrm{C}_{\mathrm{EQ}} * \mathrm{~V}_{\mathrm{CC}}{ }^{2} * \mathrm{~F} \tag{1}
\end{equation*}
$$

Where:
C_{EQ} is the equival ent capacitance expressed in pF .
$V_{C C}$ is the power supply in volts.
F is the switching frequency in MHz .
Equivalent capacitance is calculated by measuring ICC active at a specified frequency and voltage for each circuit component of interest. Measurements have been made over a range of frequencies at a fixed value of VCC. Equivalent capacitance is frequency independent so that the results may be used over a wide range of operating conditions. Equivalent capacitance values are shown below.

$C_{E Q}$ Values for ActeI FPGAs	
Modules ($C_{E Q M}$)	5.8
Input Buffers ($C_{E Q I}$)	12.9
Output Buffers ($C_{E Q O}$)	23.8
Routed Array Clock Buffer Loads ($\left.C_{E Q C R}\right)$	3.9

To calculate the active power dissipated from the complete design, the switching frequency of each part of the logic must be known. Equation 2 shows a piece-wise linear summation over all components.
Power $=\mathrm{V}_{\mathrm{CC}}{ }^{2} *\left[\left(\mathrm{~m} * \mathrm{C}_{\mathrm{EQM}} * \mathrm{f}_{\mathrm{m}}\right)_{\text {modules }}+\left(\mathrm{n} * \mathrm{C}_{\mathrm{EQQ}} * \mathrm{f}_{\mathrm{n}}\right)_{\text {inputs }}+\right.$ $\left(p *\left(C_{\text {EQO }}+C_{L}\right) * f_{p}\right)_{\text {outputs }}+0.5 *\left(q_{1} * C_{\text {EQCR }} * f_{q 1}\right)_{\text {routed_CIK1 }}$ $+\left(r_{1} * f_{q 1}\right)_{\text {routed_Clk1 }}+0.5 *\left(\mathrm{q}_{2} * \mathrm{C}_{\text {EQCR }} * \mathrm{f}_{\mathrm{q} 2}\right)_{\text {routed_Clk2 }}$ $+\left(r_{2} * f_{q 2}\right)$ routed_Clk2 $]$
Where:
$\mathrm{m} \quad=$ Number of logic modules switching at fm
$\mathrm{n} \quad=$ Number of input buffers switching at fn
$\mathrm{p}=$ Number of output buffers switching at fp
q1 = Number of clock loads on the first routed array clock
q2 $=$ Number of clock loads on the second routed array clock
$r_{1}=$ Fixed capacitance due to first routed array clock
$r_{2}=$ Fixed capacitance due to second routed array clock
$C_{E Q M}=$ Equivalent capacitance of logic modules in pF
$C_{E Q I}=$ Equivalent capacitance of input buffers in pF
$\mathrm{C}_{\mathrm{EQO}}=$ Equivalent capacitance of output buffers in pF
$C_{E Q C R}=$ Equivalent capacitance of routed array clock in pF
$C_{L} \quad=$ Output lead capacitance in pF
$\mathrm{f}_{\mathrm{m}} \quad=$ Average logic module switching rate in MHz
$f_{n} \quad=$ Average input buffer switching rate in MHz
$\mathrm{f}_{\mathrm{p}}=$ Average output buffer switching rate in MHz
$\mathrm{f}_{\mathrm{q} 1}=$ Average first routed array clock rate in MHz
$\mathrm{f}_{\mathrm{q} 2}=$ Average second routed array clock rate in MHz
Fixed Capacitance Values for Actel FPGAs (pF)

	r1	r2
Device Type	routed_Clk1	routed_Clk2
A1225A	106	106.0
A1240A	134	134.2
A1280A	168	167.8

Determining Average Switching Frequency
To determine the switching frequency for a design, you must have a detailed understanding of the data input values to the circuit. The following guidelines are meant to represent worst-case scenarios so that they can be generally used to predict the upper limits of power dissipation. These guidelines are as follows:

Logic Modules (m)	80\% of modules
Inputs switching (n)	\#inputs/4
Outputs switching (p)	\#outputs/4
First routed array clock loads (q_{1})	40% of sequential modules
Second routed array clock loads (q_{2})	40% of sequential modules
Load capacitance (C_{L})	35 pF
Average logic module switching rate (f_{m})	F/10
Average input switching rate (f_{n})	F/5
Average output switching rate (f_{p})	F/10
Average first routed array clock rate (f_{q})	F
Average second routed array clock rate ($\mathrm{f}_{\mathrm{q} 2}$)	

ACT 2 Timing Model*

*Values shown for A1240A-2 at worst-case commercial conditions. \quad I nput Module Predicted Routing Delay

Parameter Measurement

Output Buffer Delays

AC Test Loads

Load 1
(Used to measure propagation delay)

Load 2
(Used to measure rising/falling edges)

Input Buffer Delays

Sequential Module Timing Characteristics
Flip-Flops and Latches

Note: D represents all data functions involving A, B, and S for multiplexed flip-flops.

Sequential Timing Characteristics (continued)
Input Buffer Latches

Output Buffer Latches

Timing Derating Factor (Temperature and Voltage)

	Industrial			Military	
	Min.	Max.		Min.	Max.
	0.69	1.11		0.67	1.23

Timing Derating Factor for Designs at Typical Temperature ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$) and Voltage (5.0 V)

(Commercial Maximum Specification) x	0.85

Temperature and Voltage Derating Factors (normalized to Worst-Case Commercial, $\mathrm{T}_{\mathrm{J}}=4.75 \mathrm{~V}, 70^{\circ} \mathrm{C}$)

	$\mathbf{- 5 5}$	$\mathbf{- 4 0}$	$\mathbf{0}$	$\mathbf{2 5}$	$\mathbf{7 0}$	$\mathbf{8 5}$	$\mathbf{1 2 5}$
$\mathbf{4 . 5 0}$	0.75	0.79	0.86	0.92	1.06	1.11	1.23
$\mathbf{4 . 7 5}$	0.71	0.75	0.82	0.87	1.00	1.05	1.16
$\mathbf{5 . 0 0}$	0.69	0.72	0.80	0.85	0.97	1.02	1.13
$\mathbf{5 . 2 5}$	0.68	0.69	0.77	0.82	0.95	0.98	1.09
$\mathbf{5 . 5 0}$	0.67	0.69	0.76	0.81	0.93	0.97	1.08

Junction Temperature and Voltage Derating Curves
(normalized to Worst-Case Commercial, $\mathrm{T}_{\mathrm{J}}=4.75 \mathrm{~V}, 70^{\circ} \mathrm{C}$)

Note: This derating factor applies to all routing and propagation delays.

A1225A Timing Characteristics

(Worst-Case Commercial Conditions, $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$)

Logic Module Propagation Delays ${ }^{1}$		'-2' Speed		' -1 ' Speed		'Std' Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
$\mathrm{t}_{\text {PD1 }}$	Single Module		3.8		4.3		5.0	ns
${ }^{\text {co }}$	Sequential Clk to Q		3.8		4.3		5.0	ns
t_{GO}	Latch G to Q		3.8		4.3		5.0	ns
$t_{\text {RS }}$	Flip-Flop (Latch) Reset to Q		3.8		4.3		5.0	ns
Predicted Routing Delays ${ }^{2}$								
$\mathrm{t}_{\text {RD1 }}$	$\mathrm{FO}=1$ Routing Delay		1.1		1.2		1.4	ns
$\mathrm{t}_{\text {RD2 }}$	FO=2 Routing Delay		1.7		1.9		2.2	ns
$\mathrm{t}_{\text {RD3 }}$	FO=3 Routing Delay		2.3		2.6		3.0	ns
$\mathrm{t}_{\text {RD4 }}$	FO=4 Routing Delay		2.8		3.1		3.7	ns
$\mathrm{t}_{\text {RD8 }}$	FO=8 Routing Delay		4.4		4.9		5.8	ns
Sequential Timing Characteristics ${ }^{3,4}$								
${ }_{\text {t }}$ SUD	Flip-Flop (Latch) Data Input Setup	0.4		0.4		0.5		ns
$t_{\text {HD }}$	Flip-Flop (Latch) Data Input Hold	0.0		0.0		0.0		ns
$t_{\text {SUENA }}$	Flip-Flop (Latch) Enable Setup	0.8		0.9		1.0		ns
$t_{\text {HENA }}$	Flip-Flop (Latch) Enable Hold	0.0		0.0		0.0		ns
twCLKA	Flip-Flop (Latch) Clock Active Pulse Width	4.5		5.0		6.0		ns
$t_{\text {WASYN }}$	Flip-Flop (Latch) Asynchronous Pulse Width	4.5		5.0		6.0		ns
t_{A}	Flip-Flop Clock Input Period	9.4		11.0		13.0		ns
$\mathrm{t}_{\mathrm{INH}}$	Input Buffer Latch Hold	0.0		0.0		0.0		ns
tinsu	Input Buffer Latch Setup	0.4		0.4		0.5		ns
touth	Output Buffer Latch Hold	0.0		0.0		0.0		ns
toutsu	Output Buffer Latch Setup	0.4		0.4		0.5		ns
$\mathrm{f}_{\text {MAX }}$	Flip-Flop (Latch) Clock Frequency		105.0		90.0		75.0	MHz

Notes:

1. For dual-module macros, use $t_{P D 1}+t_{R D 1}+t_{P D n}, t_{C O}+t_{R D 1}+t_{P D n}$ or $t_{P D 1}+t_{R D 1}+t_{S U D}$, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-routetiming analysis or simulation is required to determine actual worst-case performance. Post-routetiming is based on actual routing delay measurements performed on the device prior to shi pment.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the DirectTimeAnalyzer utility.
4. Setup and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to theG input subtracts (adds) to theinternal setup (hold) time.

A1225A Timing Characteristics (continued)

(Worst-Case Commercial Conditions)

Input Module Propagation Delays			'-2 Speed		'-1' Speed		'Std' Speed		
Parameter	Description		Min.	Max.	Min.	Max.	Min.	Max.	Units
$\mathrm{t}_{\text {INYH }}$	Pad to Y High			2.9		3.3		3.8	ns
tinyL	Pad to Y Low			2.6		3.0		3.5	ns
$\mathrm{t}_{\text {INGH }}$	G to Y High			5.0		5.7		6.6	ns
$\mathrm{t}_{\text {INGL }}$	G to Y Low			4.7		5.4		6.3	ns
Input Module Predicted Routing Delays ${ }^{1}$									
tIRD1	FO=1 Routing Delay			4.1		4.6		5.4	ns
$\mathrm{t}_{\text {IRD2 }}$	FO=2 Routing Delay			4.6		5.2		6.1	ns
tiRD3	FO=3 Routing Delay			5.3		6.0		7.1	ns
tiRD4	FO=4 Routing Delay			5.7		6.4		7.6	ns
$\mathrm{t}_{\text {IRD8 }}$	FO=8 Routing Delay			7.4		8.3		9.8	ns
Global Clock Network									
$\mathrm{t}_{\text {CKH }}$	Input Low to High	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=256 \end{aligned}$		$\begin{aligned} & 10.2 \\ & 11.8 \end{aligned}$		$\begin{aligned} & 11.0 \\ & 13.0 \end{aligned}$		$\begin{aligned} & 12.8 \\ & 15.7 \end{aligned}$	ns
$t_{\text {CKL }}$	Input High to Low	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=256 \end{aligned}$		$\begin{aligned} & 10.2 \\ & 12.0 \end{aligned}$		$\begin{aligned} & 11.0 \\ & 13.2 \end{aligned}$		$\begin{aligned} & 12.8 \\ & 15.9 \end{aligned}$	ns
$\mathrm{t}_{\text {PWH }}$	Minimum Pulse Width High	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=256 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 3.8 \end{aligned}$		$\begin{aligned} & 4.1 \\ & 4.5 \end{aligned}$		$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$		ns
$t_{\text {PWL }}$	Minimum Pulse Width Low	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=256 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 3.8 \end{aligned}$		$\begin{aligned} & 4.1 \\ & 4.5 \end{aligned}$		$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$		ns
tCKSW	Maximum Skew	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=256 \end{aligned}$		$\begin{aligned} & 0.7 \\ & 3.5 \end{aligned}$		$\begin{aligned} & 0.7 \\ & 3.5 \end{aligned}$		$\begin{aligned} & 0.7 \\ & 3.5 \end{aligned}$	ns
$\mathrm{t}_{\text {SUEXT }}$	Input Latch External Setup	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=256 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$		$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$		$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$		ns
$t_{\text {HEXT }}$	Input Latch External Hold	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=256 \end{aligned}$	$\begin{gathered} 7.0 \\ 11.2 \end{gathered}$		$\begin{gathered} 7.0 \\ 11.2 \end{gathered}$		$\begin{gathered} 7.0 \\ 11.2 \end{gathered}$		ns
t_{p}	Minimum Period	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=256 \end{aligned}$	$\begin{aligned} & 7.7 \\ & 8.1 \end{aligned}$		$\begin{aligned} & 8.3 \\ & 8.8 \end{aligned}$		$\begin{gathered} 9.1 \\ 10.0 \end{gathered}$		ns
$\mathrm{f}_{\text {MAX }}$	Maximum Frequency	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=256 \end{aligned}$		$\begin{aligned} & 130.0 \\ & 125.0 \end{aligned}$		$\begin{aligned} & 120.0 \\ & 115.0 \end{aligned}$		$\begin{aligned} & 110.0 \\ & 100.0 \end{aligned}$	MHz

Note:

1. These parameters should be used for estimating device performance. Optimization techniques may further reduce delays by 0 to 4 ns . Routing delays are for typical designs across worst-case operating conditions. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

A1225A Timing Characteristics (continued)

(Worst-Case Commercial Conditions)

Notes:

1. Delays based on 50 pF loading.
2. SSO information can befound in the "Simultaneous Switching Output Limits for Actel FPGAs" application note on page 4-125.

A1240A Timing Characteristics
(Worst-Case Commercial Conditions, $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$)

Logic Module Propagation Delays ${ }^{1}$		'-2' Speed		'-1' Speed		'Std' Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
$t_{\text {PD1 }}$	Single Module		3.8		4.3		5.0	ns
t_{CO}	Sequential Clk to Q		3.8		4.3		5.0	ns
t_{GO}	Latch G to Q		3.8		4.3		5.0	ns
t_{RS}	Flip-Flop (Latch) Reset to Q		3.8		4.3		5.0	ns
Predicted Routing Delays ${ }^{2}$								
$\mathrm{t}_{\text {RD1 }}$	FO=1 Routing Delay		1.4		1.5		1.8	ns
$\mathrm{t}_{\mathrm{RD} 2}$	FO=2 Routing Delay		1.7		2.0		2.3	ns
$\mathrm{t}_{\text {RD3 }}$	FO=3 Routing Delay		2.3		2.6		3.0	ns
$\mathrm{t}_{\mathrm{RD} 4}$	FO=4 Routing Delay		3.1		3.5		4.1	ns
$\mathrm{t}_{\text {RD8 }}$	FO=8 Routing Delay		4.7		5.4		6.3	ns
Sequential Timing Characteristics ${ }^{\text {3, }}$ 4								
${ }^{\text {t SUD }}$	Flip-Flop (Latch) Data Input Setup	0.4		0.4		0.5		ns
$t_{\text {HD }}$	Flip-Flop (Latch) Data Input Hold	0.0		0.0		0.0		ns
$t_{\text {SUENA }}$	Flip-Flop (Latch) Enable Setup	0.8		0.9		1.0		ns
$\mathrm{t}_{\text {HENA }}$	Flip-Flop (Latch) Enable Hold	0.0		0.0		0.0		ns
${ }^{\text {t WCLKA }}$	Flip-Flop (Latch) Clock Active Pulse Width	4.5		6.0		6.5		ns
${ }^{\text {t WASYN }}$	Flip-Flop (Latch) Asynchronous Pulse Width	4.5		6.0		6.5		ns
$t_{\text {A }}$	Flip-Flop Clock Input Period	9.8		12.0		15.0		ns
$\mathrm{t}_{\text {INH }}$	Input Buffer Latch Hold	0.0		0.0		0.0		ns
$\mathrm{t}_{\text {INSU }}$	Input Buffer Latch Setup	0.4		0.4		0.5		ns
$\mathrm{t}_{\text {OUTH }}$	Output Buffer Latch Hold	0.0		0.0		0.0		ns
toutsu	Output Buffer Latch Setup	0.4		0.4		0.5		ns
$\mathrm{f}_{\text {MAX }}$	Flip-Flop (Latch) Clock Frequency		100.0		80.0		66.0	MHz

Notes:

1. For dual-module macros, use $t_{P D 1}+t_{R D 1}+t_{P D n}, t_{C O}+t_{R D 1}+t_{P D n}$ or $t_{P D 1}+t_{R D 1}+t_{S U D}$, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-routetiming analysis or simulation is required to determineactual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shi pment.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the DirectTimeAnalyzer utility.
4. Setup and hold timing parameters for the Input Buffer Latch are defined with respect to thePAD and theD input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to theinternal setup (hold) time.

A1240A Timing Characteristics (continued)
(Worst-Case Commercial Conditions)

Input Module Propagation Delays			'-2' Speed		'-1' Speed		'Std' Speed		
Parameter	Description		Min.	Max.	Min.	Max.	Min.	Max.	Units
$\mathrm{t}_{\text {INYH }}$	Pad to Y High			2.9		3.3		3.8	ns
tinyL	Pad to Y Low			2.6		3.0		3.5	ns
$\mathrm{t}_{\text {INGH }}$	G to Y High			5.0		5.7		6.6	ns
$\mathrm{t}_{\text {INGL }}$	G to Y Low			4.7		5.4		6.3	ns
Input Module Predicted Routing Delays ${ }^{1}$									
tIRD1	$\mathrm{FO}=1$ Routing Delay			4.2		4.8		5.6	ns
$\mathrm{t}_{\text {IRD2 }}$	FO=2 Routing Delay			4.8		5.4		6.4	ns
$\mathrm{t}_{\text {IRD3 }}$	FO=3 Routing Delay			5.4		6.1		7.2	ns
$\mathrm{t}_{\text {IRD4 }}$	FO=4 Routing Delay			5.9		6.7		7.9	ns
tIRD8	FO=8 Routing Delay			7.9		8.9		10.5	ns
Global Clock Network									
$\mathrm{t}_{\text {CKH }}$	Input Low to High	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=256 \end{aligned}$		$\begin{aligned} & \hline 10.2 \\ & 11.8 \end{aligned}$		$\begin{aligned} & 11.0 \\ & 13.0 \end{aligned}$		$\begin{aligned} & 12.8 \\ & 15.7 \end{aligned}$	ns
$\mathrm{t}_{\text {CKL }}$	Input High to Low	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=256 \end{aligned}$		$\begin{aligned} & 10.2 \\ & 12.0 \end{aligned}$		$\begin{aligned} & 11.0 \\ & 13.2 \end{aligned}$		$\begin{aligned} & 12.8 \\ & 15.9 \end{aligned}$	ns
$\mathrm{t}_{\text {PWH }}$	Minimum Pulse Width High	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=256 \end{aligned}$	$\begin{aligned} & 3.8 \\ & 4.1 \end{aligned}$		$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 5.5 \\ & 5.8 \end{aligned}$		ns
$t_{\text {PWL }}$	Minimum Pulse Width Low	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=256 \end{aligned}$	$\begin{aligned} & 3.8 \\ & 4.1 \end{aligned}$		$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 5.5 \\ & 5.8 \end{aligned}$		ns
tCKSW	Maximum Skew	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=256 \end{aligned}$		$\begin{aligned} & 0.5 \\ & 2.5 \end{aligned}$		$\begin{aligned} & 0.5 \\ & 2.5 \end{aligned}$		$\begin{aligned} & 0.5 \\ & 2.5 \end{aligned}$	ns
$\mathrm{t}_{\text {SUEXT }}$	Input Latch External Setup	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=256 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$		$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$		$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$		ns
$\mathrm{t}_{\text {HEXT }}$	Input Latch External Hold	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=256 \end{aligned}$	$\begin{gathered} 7.0 \\ 11.2 \end{gathered}$		$\begin{gathered} 7.0 \\ 11.2 \end{gathered}$		$\begin{gathered} 7.0 \\ 11.2 \end{gathered}$		ns
t_{p}	Minimum Period	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=256 \end{aligned}$	$\begin{aligned} & 8.1 \\ & 8.8 \end{aligned}$		$\begin{gathered} 9.1 \\ 10.0 \end{gathered}$		$\begin{aligned} & 11.1 \\ & 11.7 \end{aligned}$		ns
$\mathrm{f}_{\text {MAX }}$	Maximum Frequency	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=256 \end{aligned}$		$\begin{aligned} & 125.0 \\ & 115.0 \end{aligned}$		$\begin{aligned} & 110.0 \\ & 100.0 \end{aligned}$		$\begin{aligned} & 90.0 \\ & 85.0 \end{aligned}$	MHz

Note:

1. These parameters should be used for estimating devi ce performance. Optimization techniques may further reduce delays by 0 to 4 ns . Routing delays are for typical designs across worst-case operating conditions. Post-route timing analysis or simulation is required to determine actual worst-caseperformance. Post-routetiming is based on actual routing delay measurements performed on the device prior to shipment.

A1240A Timing Characteristics (continued)

(Worst-Case Commercial Conditions)

Notes:

1. Delays based on 50 pF loading.
2. SSO information can befound in the "Simultaneous Switching Output Limits for Actel FPGAs" application note on page4-125.

A1280A Timing Characteristics

(Worst-Case Commercial Conditions, $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$)

Logic Module Propagation Delays ${ }^{1}$		'-2' Speed		'-1' Speed		'Std' Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
$t_{\text {PD1 }}$	Single Module		3.8		4.3		5.0	ns
t_{CO}	Sequential Clk to Q		3.8		4.3		5.0	ns
t_{GO}	Latch G to Q		3.8		4.3		5.0	ns
t_{RS}	Flip-Flop (Latch) Reset to Q		3.8		4.3		5.0	ns
Predicted Routing Delays ${ }^{2}$								
$\mathrm{t}_{\text {RD1 }}$	FO=1 Routing Delay		1.7		2.0		2.3	ns
$\mathrm{t}_{\mathrm{RD} 2}$	FO=2 Routing Delay		2.5		2.8		3.3	ns
$\mathrm{t}_{\text {RD3 }}$	FO=3 Routing Delay		3.0		3.4		4.0	ns
$\mathrm{t}_{\text {RD4 }}$	FO=4 Routing Delay		3.7		4.2		4.9	ns
$\mathrm{t}_{\text {RD8 }}$	FO=8 Routing Delay		6.7		7.5		8.8	ns
Sequential Timing Characteristics ${ }^{3,4}$								
$\mathrm{t}_{\text {SUD }}$	Flip-Flop (Latch) Data Input Setup	0.4		0.4		0.5		ns
$t_{\text {HD }}$	Flip-Flop (Latch) Data Input Hold	0.0		0.0		0.0		ns
tsuena	Flip-Flop (Latch) Enable Setup	0.8		0.9		1.0		ns
$\mathrm{t}_{\text {HENA }}$	Flip-Flop (Latch) Enable Hold	0.0		0.0		0.0		ns
$t_{\text {WCLKA }}$	Flip-Flop (Latch) Clock Active Pulse Width	5.5		6.0		7.0		ns
twasyn	Flip-Flop (Latch) Asynchronous Pulse Width	5.5		6.0		7.0		ns
t_{A}	Flip-Flop Clock Input Period	11.7		13.3		18.0		ns
$\mathrm{t}_{\text {INH }}$	Input Buffer Latch Hold	0.0		0.0		0.0		ns
tinsu	Input Buffer Latch Setup	0.4		0.4		0.5		ns
touth	Output Buffer Latch Hold	0.0		0.0		0.0		ns
toutsu	Output Buffer Latch Setup	0.4		0.4		0.5		ns
$\mathrm{f}_{\text {MAX }}$	Flip-Flop (Latch) Clock Frequency		85.0		75.0		50.0	MHz

Notes:

1. For dual-module macros, use $t_{P D 1}+t_{R D 1}+t_{P D n}, t_{C O}+t_{R D 1}+t_{P D n}$, or $t_{P D 1}+t_{R D 1}+t_{S U D}$, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-routetiming analysis or simulation is requi red to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the DirectTimeAnalyzer utility.
4. Setup and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for del ay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.

A1280A Timing Characteristics (continued)

(Worst-Case Commercial Conditions)

Input Module Propagation Delays			'-2' Speed		'-1' Speed		'Std' Speed		
Parameter	Description		Min	Max.	Min.	Max.	Min.	Max.	Units
$\mathrm{t}_{\mathrm{INYH}}$	Pad to Y High			2.9		3.3		3.8	ns
$\mathrm{t}_{\mathrm{INYL}}$	Pad to Y Low			2.7		3.0		3.5	ns
$\mathrm{t}_{\text {INGH }}$	G to Y High			5.0		5.7		6.6	ns
tingL	G to Y Low			4.8		5.4		6.3	ns
Input Module Predicted Routing Delays ${ }^{1}$									
tIRD1	FO=1 Routing Delay			4.6		5.1		6.0	ns
$\mathrm{t}_{\text {IRD2 }}$	$\mathrm{FO}=2$ Routing Delay			5.2		5.9		6.9	ns
$\mathrm{t}_{\text {IRD3 }}$	FO=3 Routing Delay			5.6		6.3		7.4	ns
$\mathrm{t}_{\text {IRD4 }}$	FO=4 Routing Delay			6.5		7.3		8.6	ns
$\mathrm{t}_{\text {IRD8 }}$	FO=8 Routing Delay			9.4		10.5		12.4	ns
Global Clock Network									
$t_{\text {CKH }}$	Input Low to High	$\begin{aligned} & \hline \mathrm{FO}=32 \\ & \mathrm{FO}=384 \end{aligned}$		$\begin{aligned} & 10.2 \\ & 13.1 \end{aligned}$		$\begin{aligned} & \hline 11.0 \\ & 14.6 \end{aligned}$		$\begin{aligned} & \hline 12.8 \\ & 17.2 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{CKL}}$	Input High to Low	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=384 \end{aligned}$		$\begin{aligned} & 10.2 \\ & 13.3 \end{aligned}$		$\begin{aligned} & 11.0 \\ & 14.9 \end{aligned}$		$\begin{aligned} & 12.8 \\ & 17.5 \end{aligned}$	ns
$t_{\text {PWH }}$	Minimum Pulse Width High	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=384 \end{aligned}$	5.0 5.8		$\begin{aligned} & 5.5 \\ & 6.4 \end{aligned}$		$\begin{aligned} & 6.6 \\ & 7.6 \end{aligned}$		ns
$t_{\text {PWL }}$	Minimum Pulse Width Low	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=384 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.8 \end{aligned}$		$\begin{aligned} & 5.5 \\ & 6.4 \end{aligned}$		$\begin{aligned} & 6.6 \\ & 7.6 \end{aligned}$		ns
tCKSW	Maximum Skew	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=384 \end{aligned}$		$\begin{aligned} & 0.5 \\ & 2.5 \end{aligned}$		$\begin{aligned} & 0.5 \\ & 2.5 \end{aligned}$		$\begin{aligned} & 0.5 \\ & 2.5 \end{aligned}$	ns
$t_{\text {SUEXT }}$	Input Latch External Setup	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=384 \end{aligned}$	0.0 0.0		$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$		$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$		ns
$t_{\text {HEXT }}$	Input Latch External Hold	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=384 \end{aligned}$	$\begin{gathered} 7.0 \\ 11.2 \end{gathered}$		$\begin{gathered} 7.0 \\ 11.2 \end{gathered}$		$\begin{gathered} 7.0 \\ 11.2 \end{gathered}$		ns
t_{p}	Minimum Period	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=384 \end{aligned}$	$\begin{gathered} 9.6 \\ 10.6 \end{gathered}$		$\begin{aligned} & 11.2 \\ & 12.6 \end{aligned}$		$\begin{aligned} & 13.3 \\ & 15.3 \end{aligned}$		ns
$\mathrm{f}_{\text {MAX }}$	Maximum Frequency	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=384 \end{aligned}$		$\begin{gathered} 105.0 \\ 95.0 \end{gathered}$		$\begin{aligned} & 90.0 \\ & 80.0 \end{aligned}$		$\begin{aligned} & 75.0 \\ & 65.0 \end{aligned}$	MHz

Note:

1. These parameters should be used for estimating device performance. Optimization techniques may further reduce delays by 0 to 4 ns . Routing delays are for typical designs across worst-case operating conditions. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

A1280A Timing Characteristics (continued)

(Worst-Case Commercial Conditions)

Output Module Timing		'-2' Speed		'-1' Speed		'Std' Speed		
Parameter	Description	Min.	Max.	Min	Max.	Min.	Max.	Units
TTL Output Module Timing ${ }^{1,2}$								
$t_{\text {DLH }}$ $t_{\text {DHL }}$ $t_{\text {ENZH }}$ $t_{\text {ENZL }}$ tenhz $t_{\text {ENLZ }}$ $t_{G L H}$ t_{GHL} $\mathrm{d}_{\text {TLH }}$ $\mathrm{d}_{\mathrm{THL}}$	Data to Pad High Data to Pad Low Enable Pad Z to High Enable Pad Z to Low Enable Pad High to Z Enable Pad Low to Z G to Pad High G to Pad Low Delta Low to High Delta High to Low		$\begin{gathered} \hline 8.1 \\ 10.2 \\ 9.0 \\ 11.8 \\ 7.1 \\ 8.4 \\ 9.0 \\ 11.3 \\ 0.07 \\ 0.12 \end{gathered}$		$\begin{gathered} \hline 9.0 \\ 11.4 \\ 10.0 \\ 13.2 \\ 8.0 \\ 9.5 \\ 10.2 \\ 12.7 \\ 0.08 \\ 0.13 \end{gathered}$		10.6 13.4 11.8 15.5 9.4 11.1 11.9 14.9 0.09 0.16	ns ns/pF ns/pF
CMOS Output Module Timing ${ }^{1,2}$								
$\mathrm{t}_{\mathrm{DLH}}$ $t_{\text {DHL }}$ $t_{\text {ENZH }}$ $t_{\text {ENZL }}$ tenhz tenlz $\mathrm{t}_{\mathrm{GLH}}$ $t_{G H L}$ $\mathrm{d}_{\text {TLH }}$ $\mathrm{d}_{\mathrm{THL}}$	Data to Pad High Data to Pad Low Enable Pad Z to High Enable Pad Z to Low Enable Pad High to Z Enable Pad Low to Z G to Pad High G to Pad Low Delta Low to High Delta High to Low		$\begin{gathered} \hline 10.3 \\ 8.5 \\ 9.0 \\ 11.8 \\ 7.1 \\ 8.4 \\ 9.0 \\ 11.3 \\ 0.12 \\ 0.09 \end{gathered}$		$\begin{gathered} \hline 11.5 \\ 9.6 \\ 10.0 \\ 13.2 \\ 8.0 \\ 9.5 \\ 10.2 \\ 12.7 \\ 0.13 \\ 0.10 \end{gathered}$		$\begin{gathered} \hline 13.5 \\ 11.2 \\ 11.8 \\ 15.5 \\ 9.4 \\ 11.1 \\ 11.9 \\ 14.9 \\ 0.16 \\ 0.12 \end{gathered}$	ns $\mathrm{ns} / \mathrm{pF}$ ns/pF

Notes::

1. Delays based on 50 pF loading.
2. SSO information can befound in the "Simultaneous Switching Output Limits for Actel FPGAs" application note on page 4-125.

Package Pin Assignments
84-Pin PLCC

Signal	A1225A Function	A1240A Function	A1280A Function
2	CLKB, I/O	CLKB, I/O	CLKB, I/O
4	PRB, I/O	PRB, I/O	GRB, I/O
6	GND	GND	DCLK, I/O
10	DCLK, I/O	DCLK, I/O	MODE
12	MODE	MODE	VCC
22	VCC	VCC	VCC
23	VCC	VCC	GND
28	GND	GND	VCC
43	VCC	VCC	GND
49	GND	GND	GND
63	GND	GND	VCC
64	VCC	VCC	VCC
65	VCC	GNC	GND
70	GND	SDI, I/O	SDI, I/O
76	SDI, I/O	PRA, I/O	PRA, I/O
81	PRA, I/O	CLKA, I/O	CLKA, I/O
83	CLKA, I/O	VCC	VCC

Notes:

1. All unlisted pin numbers are user I/Os.
2. MODE pin should be terminated to GND through a 10 K resistor to enableActionprobe usage, otherwise it can beterminated directly to GND.

Package Pin Assignments (continued)
100-Pin PQFP

Pin Number	A1225A Function
2	DCLK, I/O
4	MODE
9	GND
16	VCC
17	VCC
22	GND
34	GND
40	VCC
46	GND
57	GND
64	GND
65	VCC

Pin Number	A1225A Function
66	VCC
67	VCC
72	GND
79	SDI, I/O
84	GND
87	PRA, I/O
89	CLKA, I/O
90	VCC
92	CLKB, I/O
94	PRB, I/O
96	GND

Notes:

1. All unlisted pin numbers are user I/Os.
2. MODE pin should be terminated to GND through a 10K resistor to enableActionprobe usage, otherwiseit can beterminated directly to GND.

Package Pin Assignments (continued)
144-Pin PQFP

144-Pin PQFP

Pin Number	A1240A Function
2	MODE
9	GND
10	GND
11	GND
18	VCC
19	VCC
20	VCC
21	VCC
28	GND
29	GND
30	GND
44	GND
45	GND
46	GND
54	VCC
55	VCC
56	VCC
64	GND
65	GND
79	GND
80	GND
81	GND
88	GND

Pin Number	A1240A Function
89	VCC
90	VCC
91	VCC
92	VCC
93	VCC
100	GND
101	GND
102	GND
110	SDI, I/O
116	GND
117	GND
118	GND
123	CLKA, I/O
125	VCC
126	VCC
127	VCC
128	CLKB, I/O
130	PRB, I/O
132	GND
136	GND
137	138
144	DCLK, I/O

Notes:

1. All unlisted pin numbers are user I/Os.
2. MODE pin should be terminated to GND through a 10 K resistor to enableActi onprobe usage, otherwise it can beterminated directly to GND.

Package Pin Assignments (continued)
160-Pin PQFP

160-Pin PQFP

Pin Number	A1280A Function	Pin Number	A1280A Function
2	DCLK, I/O	69	GND
6	VCC	80	GND
11	GND	86	VCC
16	PRB, I/O	89	GND
18	CLKB, I/O	98	VCC
20	VCC	99	GND
21	CLKA, I/O	109	GND
23	PRA, I/O	114	VCC
30	GND	120	GND
35	VCC	125	GND
38	SDI, I/O	130	GND
40	GND	135	VCC
44	GND	138	VCC
49	GND	139	VCC
54	VCC	140	GND
57	VCC	145	GND
58	VCC	150	VCC
59	GND	155	GND
60	VCC	159	MODE
61	GND	160	GND
64	GND		

Notes:

1. All unlisted pin numbers are user I/Os.
2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage, otherwiseit can beterminated di rectly to GND.

Package Pin Assigments (continued) 100-Pin VQFP

100-Pin VQFP

Pin Number	A1225A Function
2	MODE
7	GND
14	VCC
15	VCC
20	GND
32	GND
38	VCC
44	GND
55	GND
62	GND
63	VCC
64	VCC

Pin Number	A1225A Function
65	VCC
70	GND
77	SDI, I/O
82	GND
85	PRA, I/O
87	CLKA, I/O
88	VCC
90	CLKB, I/O
92	PRB, I/O
94	GND
100	DCLK, I/O

Notes:

1. All unlisted pin numbers are user I/Os.
2. MODE pin should be terminated to GND through a 10 K resistor to enableActionprobe usage, otherwiseit can beterminated directly to GND.

Package Pin Assignments (continued)
176-Pin TQFP

176-Pin TQFP

Pin Number	A1240A Function	A1280A Function	Pin Number	A1240A Function	A1280A Function
1	GND	GND	101	NC	NC
2	MODE	MODE	103	NC	I/O
8	NC	NC	106	GND	GND
10	NC	I/O	107	NC	I/O
11	NC	I/O	108	NC	1/O
13	NC	vcc	109	GND	GND
18	GND	GND	110	VCC	VCC
19	NC	I/O	111	GND	GND
20	NC	I/O	112	VCC	VCC
22	NC	I/O	113	Vcc	vcc
23	GND	GND	114	NC	I/O
24	NC	Vcc	115	NC	I/O
25	Vcc	vcc	116	NC	Vcc
26	NC	I/O	121	NC	NC
27	NC	I/O	124	NC	I/O
28	vcc	vcc	125	NC	I/O
29	NC	I/O	126	NC	NC
33	NC	NC	133	GND	GND
37	NC	I/O	135	SDI, I/O	SDI, I/O
38	NC	NC	136	NC	I/O
45	GND	GND	140	NC	vcc
52	NC	vcc	143	NC	I/O
54	NC	I/O	144	NC	1/0
55	NC	I/O	145	NC	NC
57	NC	NC	147	NC	I/O
61	NC	I/O	151	NC	I/O
64	NC	I/O	152	PRA, I/O	PRA, I/O
66	NC	I/O	154	CLKA, I/O	CLKA, I/O
67	GND	GND	155	VCC	VCC
68	vcc	vcc	156	GND	GND
74	NC	I/O	158	CLKB, I/O	CLKB, I/O
77	NC	NC	160	PRB, I/O	PRB, I/O
78	NC	I/O	161	NC	I/O
80	NC	I/O	165	NC	NC
82	NC	Vcc	166	NC	I/O
86	NC	I/O	168	NC	I/O
89	GND	GND	170	NC	vcc
96	NC	I/O	173	NC	I/O
97	NC	1/0	175	DCLK, I/O	DCLK, I/O

Notes:

1. NC: Denotes No Connection
2. All unlisted pin numbers are user I/Os.
3. MODE pin should beterminated to GND through a 1OK resistor to enableActi onprobe usage, otherwise it can beterminated directly to GND.

Package Pin Assignments (continued)
172-Pin CQFP

Pin Number	A1280A Function
1	MODE
7	GND
12	VCC
17	GND
22	GND
23	VCC
24	VCC
27	VCC
32	GND
37	GND
50	VCC
55	GND
65	GND
66	VCC
75	GND
80	VCC
98	GND
103	GND
106	GND

Pin Number	A1280A Function
107	VCC
108	GND
109	VCC
110	VCC
113	VCC
118	GND
123	GND
131	SDI, I/O
136	VCC
141	GND
148	PRA, I/O
150	CLKA, I/O
151	VCC
152	GND
154	CLKB, I/O
156	PRB, I/O
161	GND
166	VCC
171	DCLK, I/O

Notes:

1. All unlisted pin numbers are user I/Os.
2. MODE pin should be terminated to GND through a 10K resistor to enableActionprobe usage, otherwiseit can beterminated directly to GND.

Package Pin Assigments (continued)
100-Pin CPGA

Orientation Pin

Pin Number	A1225A Function
A4	PRB, I/O
A7	PRA, I/O
B6	VCC
C2	MODE
C3	DCLK, I/O
C5	GND
C6	CLKA, I/O
C7	GND
C8	SDI, I/O
D6	CLKB, I/O
D10	GND
E3	GND

Pin Number	A1225A Function
E11	VCC
F3	VCC
F9	VCC
F10	VCC
F11	GND
G1	VCC
G3	GND
G9	GND
J5	GND
J7	GND
K6	VCC

1. All unlisted pin numbers are user I/Os.
2. MODE pin should be terminated to GND through a 10K resistor to enableActionprobe usage, otherwiseit can beterminated directly to GND.

Package Pin Assignments (continued)

Orientation Pin

Pin Number	A1240A Function
A1	MODE
B5	GND
B6	CLKB, I/O
B7	CLKA, I/O
B8	PRA, I/O
B9	GND
B12	SDI, I/O
C3	DCLK, I/O
C5	GND
C6	PRB, I/O
C7	VCC
C9	GND
D7	VCC
E3	GND
E11	GND
E12	GND
F4	GND

Pin Number	A1240A Function
G2	VCC
G3	VCC
G4	VCC
G10	VCC
G11	VCC
G12	VCC
G13	VCC
H13	GND
J2	GND
J3	GND
J11	GND
K7	VCC
K12	GND
L5	GND
L7	VCC
L9	GND
M9	GND

Notes:

1. All unlisted pin numbers are user I/Os.
2. MODE pin should be terminated to GND through a 10 K resistor to enableActionprobe usage, otherwiseit can beterminated directly to GND.

Package Pin Assignments (continued)
176-Pin CPGA

Pin Number	A1280A Function
A3	CLKA, I/O
B3	DCLK, I/O
B8	CLKB, I/O
B14	SDI, I/O
C3	MODE
C8	GND
C9	PRA, I/O
D4	GND
D5	VCC
D6	GND
D7	PRB, I/O
D8	VCC
D10	GND
D11	VCC
D12	GND
E4	GND
E12	GND
F4	VCC
F12	GND
G4	GND
G12	VCC

Pin Number	A1280A Function
H2	VCC
H3	VCC
H4	GND
H12	GND
H13	VCC
H14	VCC
J4	VCC
J12	GND
J13	GND
J14	VCC
K4	GND
K12	GND
L4	GND
M4	GND
M5	VCC
M6	GND
M8	GND
M10	GND
M11	VCC
M12	GND
N8	VCC

1. All unlisted pin numbers areuser I/Os.
2. MODE pin should beterminated to GND through a 10 K resistor to enableActionprobe usage, otherwiseit can beterminated directly to GND.
