
Abstraction of Communication
and Concurrency in VHDL

Peter Ashenden

University of Adelaide

Visiting Scholar at

University of Cincinnati
partially supported by Wright Laboratory
under USAF contract F33615-95-C-1638

9 December, 1997 Peter Ashenden — Abstraction of Communication and Concurrency 2

Complexity Management

• For system-level design of behavior
– abstraction of data

– abstraction of communication & timing

– abstraction of concurrency

• SUAVE:
– SAVANT & University of Adelaide

VHDL Extensions

– object-oriented data modeling

– genericity

– communication & concurrency

9 December, 1997 Peter Ashenden — Abstraction of Communication and Concurrency 3

Design Objectives

• Abstract communication (cf signals)

• Dynamic process creation/termination

• Avoid bias toward hardware or software

• Integration with existing language and
oo/genericity extensions

• superset of existing language

9 December, 1997 Peter Ashenden — Abstraction of Communication and Concurrency 4

Communication

• Channel types

• Channel objects

• Interface channels
– ports and parameters

• Dynamically created channels
– access-to-channel types

• Message passing
– send/receive

– select (non-deterministic choice)

9 December, 1997 Peter Ashenden — Abstraction of Communication and Concurrency 5

Concurrency

• Process declaration
– generic and port clauses define interface

• Static instantiation

• Dynamic instantiation

9 December, 1997 Peter Ashenden — Abstraction of Communication and Concurrency 6

Client

Example

• Client-server system
– number of clients not known a priori

– multi-threaded server

– creates new process to handle a request

Client Server

Agent

request

forwarded
request

result

9 December, 1997 Peter Ashenden — Abstraction of Communication and Concurrency 7

System Overview
architecture system_level of client_server_system is

type result_value is …;
type result_channel is channel result_value;
type result_ref is access result_channel;

type request_info is record
...; -- info for the transaction
result_please : result_ref;

end record request_info;

process client is …

process server is …

channel server_request : request_info;

begin

the_server : process server
port map (request => server_request);

a_client : process client
port map (request => server_request);

end architecture system_level;

9 December, 1997 Peter Ashenden — Abstraction of Communication and Concurrency 8

Client Process Declaration
process client is

port (channel request : out request_channel);

variable result : result_ref := new result_channel;

begin
...
send (…, result) to request;
receive … from result.all;
...

end process client;

9 December, 1997 Peter Ashenden — Abstraction of Communication and Concurrency 9

Server Process Declaration
process server is

port (channel request : in request_channel);
process agent is

port (channel request : in request_channel);
variable info : request_info;

begin
receive info from request;
…; -- perform transaction
send … to info.result_please.all;
terminate;

end process agent;
variable info : request_info;
variable new_agent_request : request_ref;

begin
receive info from request;
new_agent_request := new request_channel;
process agent

port map (request => new_agent_request.all);
send info to new_agent_request.all;

end process server;

9 December, 1997 Peter Ashenden — Abstraction of Communication and Concurrency 10

Summary

• Complexity management ⇒ abstraction

• SUAVE: abstraction for
– data modeling

– communication & timing

– concurrency

• System-level modeling
– pre hardware/software partitioning

• Further info
– http://www.ececs.uc.edu/~petera/suave.html

