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Complexity Management

• For system-level design of behavior
– abstraction of data

– abstraction of communication & timing

– abstraction of concurrency

• SUAVE:
– SAVANT & University of Adelaide

VHDL Extensions

– object-oriented data modeling

– genericity

– communication & concurrency
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Design Objectives

• Abstract communication (cf signals)

• Dynamic process creation/termination

• Avoid bias toward hardware or software

• Integration with existing language and
oo/genericity extensions

• superset of existing language
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Communication

• Channel types

• Channel objects

• Interface channels
– ports and parameters

• Dynamically created channels
– access-to-channel types

• Message passing
– send/receive

– select (non-deterministic choice)
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Concurrency

• Process declaration
– generic and port clauses define interface

• Static instantiation

• Dynamic instantiation
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Client

Example

• Client-server system
– number of clients not known a priori

– multi-threaded server

– creates new process to handle a request

Client Server

Agent

request

forwarded
request

result
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System Overview
architecture system_level of client_server_system is

type result_value is …;
type result_channel is channel result_value;
type result_ref is access result_channel;

type request_info is record
...;  -- info for the transaction
result_please : result_ref;

end record request_info;

process client is …

process server is …

channel server_request : request_info;

begin

the_server : process server
port map ( request => server_request );

a_client : process client
port map ( request => server_request );

end architecture system_level;
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Client Process Declaration
process client is

port ( channel request : out request_channel );

variable result : result_ref := new result_channel;

begin
...
send ( …, result ) to request;
receive … from result.all;
...

end process client;
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Server Process Declaration
process server is

port ( channel request : in request_channel );
process agent is

port ( channel request : in request_channel );
variable info : request_info;

begin
receive info from request;
…;  -- perform transaction
send … to info.result_please.all;
terminate;

end process agent;
variable info : request_info;
variable new_agent_request : request_ref;

begin
receive info from request;
new_agent_request := new request_channel;
process agent

port map ( request => new_agent_request.all );
send info to new_agent_request.all;

end process server;
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Summary

• Complexity management ⇒ abstraction

• SUAVE: abstraction for
– data modeling

– communication & timing

– concurrency

• System-level modeling
– pre hardware/software partitioning

• Further info
– http://www.ececs.uc.edu/~petera/suave.html


