
HICSS '98 — Data Modeling in VHDL January 1998

Peter Ashenden 1

Data Modeling in VHDL

Peter J. Ashenden
The University of Adelaide

Philip A. Wilsey
University of Cincinnati

This work was partially supported by Wright Laboratory
under USAF contract F33615-95-C-1638.

January 1998 Peter Ashenden — HICSS '98: Data Modeling in VHDL 2

Complexity Management
• For system-level design of behavior

– abstraction of data
– abstraction of communication & timing
– abstraction of concurrency

• SUAVE:
– SAVANT & University of Adelaide

VHDL Extensions
– object-oriented data modeling
– genericity
– communication & concurrency

HICSS '98 — Data Modeling in VHDL January 1998

Peter Ashenden 2

January 1998 Peter Ashenden — HICSS '98: Data Modeling in VHDL 3

Design Objectives
• Support high-level modeling

– improve encapsulation and information hiding
– provide for hierarchies of abstraction

• Support re-use and incremental development
– polymorphism, dynamic binding

• Support hw/sw codesign
– improved integration with programming languages

• Preserve correctness of existing models
• Design principles from VHDL-93

– preserve “conceptual integrity”

January 1998 Peter Ashenden — HICSS '98: Data Modeling in VHDL 4

Class-Based Approach
• Example: Objective VHDL (Radetzki et al)
• Class is a specific language construct

– encapsulates data and operations
– may inherit from a superclass
– an object is an instance of a class

• cf. Simula, Smalltalk, C++, Java

HICSS '98 — Data Modeling in VHDL January 1998

Peter Ashenden 3

January 1998 Peter Ashenden — HICSS '98: Data Modeling in VHDL 5

Programming by Extension
• Example: SUAVE (Ashenden & Wilsey)
• Class is a type-derivation hierarchy

– package encapsulates a tagged type and
operations (ADT)

– a new type may extend a parent type
• inherits operations

– T’Class denotes type hierarchy rooted at T
– an object is of a tagged type or class-wide type

• cf. Oberon-2, Ada-95

January 1998 Peter Ashenden — HICSS '98: Data Modeling in VHDL 6

Integration with VHDL Signals
• Variables denote machine locations
• Signals denote trajectories of values

– assignment: editing scheduled trajectory
– update: resolution; type conversions on net
– event: change of value triggers processes

HICSS '98 — Data Modeling in VHDL January 1998

Peter Ashenden 4

January 1998 Peter Ashenden — HICSS '98: Data Modeling in VHDL 7

Classes and Signals
• Problem: data in hidden in the class

– behavior of operation depends on kind of object

• Objective VHDL solution:

type complex is class
class attribute re, im : real;
impure function real_part (x : complex) return real;
impure function imag_part (x : complex) return real;
procedure add (y : complex);

end class complex;

January 1998 Peter Ashenden — HICSS '98: Data Modeling in VHDL 8

Classes and Signals
type complex is class body

. . .
for signal

procedure add (y : complex) is
begin

re <= re + y.real_part;
im <= im + y.imag_part;

end procedure add;
end for;
for variable

procedure add (y : complex) is
begin

re := re + y.real_part;
im := re + y.imag_part;

end procedure add;
end for;

end class complex;

HICSS '98 — Data Modeling in VHDL January 1998

Peter Ashenden 5

January 1998 Peter Ashenden — HICSS '98: Data Modeling in VHDL 9

ADTs and Signals
• Package defines a type

– signals declared to be of the type
– assignment/update” use predefined “:=”, “=”
– signal/variable operations distinguished by

parameter kind if necessary

• SUAVE solution: ...

January 1998 Peter Ashenden — HICSS '98: Data Modeling in VHDL 10

ADTs and Signals
package complex_numbers is

type complex is private;
. . .
function “+” (x, y : complex) return complex;

private
type complex is record

re, im : real;
end record complex;

end package complex_numbers;

package body complex_numbers is
. . .
function “+” (x, y : complex) return complex is
begin

return (x.re + y.re, x.im + y.im);
end function “+”;

end package body complex_numbers;

HICSS '98 — Data Modeling in VHDL January 1998

Peter Ashenden 6

January 1998 Peter Ashenden — HICSS '98: Data Modeling in VHDL 11

ADTs and Signals
use complex_numbers.all;
variable c1, c2 : complex;
signal s1, s2 : complex;
. . .
c1 := c1 + c2;
s1 <= s2 + c1;

January 1998 Peter Ashenden — HICSS '98: Data Modeling in VHDL 12

Encapsulation
• ADTs require strong encapsulation
• VHDL packages provide encapsulation

– weak: concrete type is visible
– strengthen by adding private types (à la Ada)

• Classes provide encapsulation
– but replicate aspects of packages
– complicate the language

HICSS '98 — Data Modeling in VHDL January 1998

Peter Ashenden 7

January 1998 Peter Ashenden — HICSS '98: Data Modeling in VHDL 13

Summary
• Both approaches can be made to work
• Prefer programming by extension

– integrates with existing language better
• existing features
• existing style

– avoids duplication of features
– integrates with generics to provide

mixin inheritance

• SUAVE
– http://www.ececs.uc.edu/~petera/suave.html

