
1

SUAVE: Extending VHDL to
Improve Modeling Support

Peter J. Ashenden
University of Adelaide

Philip A. Wilsey, Dale E. Martin
University of Cincinnati

This work was partially supported by Wright Laboratory
under USAF contract F33615-95-C-1638.

July 1997 Ashenden, Wilsey & Martin — SUAVE 2

SUAVE
SSAVANT and
UUniversity of
AAdelaide
VVHDL

EExtensions

2

July 1997 Ashenden, Wilsey & Martin — SUAVE 3

Outline
• Design Objectives
• Overview of Extensions

– encapsulation
– type derivation & inheritance
– genericity

• What we have not done (yet)
– entity/architecture inheritance
– concurrency and communication

July 1997 Ashenden, Wilsey & Martin — SUAVE 4

Design Objectives
• Support high-level modeling

– improve encapsulation and information hiding
– provide for hierarchies of abstraction

• Support re-use and incremental development
– polymorphism, dynamic binding, type genericity

• Preserve capability for synthesis & other analysis
• Support hw/sw codesign

– improved integration with programming languages

. . .

3

July 1997 Ashenden, Wilsey & Martin — SUAVE 5

Design Objectives (cont)

• Refinement through elaboration of components
– avoid repartitioning

• Preserve correctness of existing models
• Design principles from VHDL-93

– preserve “conceptual integrity”

July 1997 Ashenden, Wilsey & Martin — SUAVE 6

Overview of Extensions
• Borrow heavily from Ada-95

– VHDL already has much in common with Ada
– borrow encapsulation, information hiding, inheritance,

genericity features

• Class-based cf programming by extension
– class-based

• replicates package features
• choose one or the other, but not both!

– programming by extension
• integrates better with signal semantics

4

July 1997 Ashenden, Wilsey & Martin — SUAVE 7

Encapsulation
• Strengthen existing package feature

– used to define secure ADTs

• Package can have visible part and private part
• Private type

– declare partial view in visible part
• includes some contractual details

– declare full view in private part

• Allow packages in any declarative region
– local ADTs

July 1997 Ashenden, Wilsey & Martin — SUAVE 8

Encapsulation Example
package complex_numbers is

type complex is private;

constant i : complex;
function re (C : complex) return real;
function im (C : complex) return real;
function "abs" (C : complex) return real;
function arg (C : complex) return real;

function "+" (L, R : complex) return complex;
function "–" (L, R : complex) return complex;
. . .

private

type complex is
record

re, im : real;
end record complex;

end package complex_numbers;

5

July 1997 Ashenden, Wilsey & Martin — SUAVE 9

Encapsulation Example (cont)

use complex_numbers.all;

signal a, b, sum : complex;
signal enable : bit;
. . .

sum <= a + b after 10 ns when enable = '1' else
0.0 + 0.0*i after 10 ns;

July 1997 Ashenden, Wilsey & Martin — SUAVE 10

Encapsulation: Contracts
• Limited private type

– assignment not allowed, no predefined equality
– use when deep copy/compare needed

• Access private type
– needed if full view includes access types
– can’t be used for signals

6

July 1997 Ashenden, Wilsey & Martin — SUAVE 11

Type Derivation and Classes
• Adopt from Ada-95:

– tagged records
– type derivation

• type derived from tagged record can add elements
• inherits primitive operations from parent type
• can override/augment operations

– class-wide types, class-wide operations
• T’Class is hierarchy of types derived from T
• dynamic dispatching

– abstract type and operations

• Signals and dynamic variables can be class-wide

July 1997 Ashenden, Wilsey & Martin — SUAVE 12

Type Derivation Example
type instruction is

tagged record
opcode : opcode_type;

end record instruction;

function privileged (instr : instruction; mode : protection_mode)
return boolean;

procedure disassemble (instr : instruction; file output : text);

type ALU_instruction is new instruction with
record

destination, source_1, source_2 : register_number;
end record ALU_instruction;

procedure disassemble (instr : ALU_instruction; file output : text);

7

July 1997 Ashenden, Wilsey & Martin — SUAVE 13

Type Derivation Example (cont)

type memory_instruction is abstract new instruction with record
base : register_number;
offset : integer;

end record memory_instruction;

function effective_address_of (instr : memory_instruction) return natural;

procedure perform_memory_transfer (instr : memory_instruction) is abstract;

type load_instruction is new memory_instruction with record
destination : reg_number;

end record load_instruction;

procedure perform_memory_transfer (instr : load_instruction);

type store_instruction is new memory_instruction with record
source : reg_number;

end record store_instruction;

procedure perform_memory_transfer (instr : store_instruction);

July 1997 Ashenden, Wilsey & Martin — SUAVE 14

Type Derivation Example (cont)

procedure execute (instr : instruction'class) is
begin

disassemble (instr, trace_file);
if privileged(instr) and execution_mode = user then

handle_privilege_violation;
else

. . .
end if;

end procedure execute;

entity instruction_reg is
port (load_enable : in bit;

instr_in : in instruction'class;
instr_out : out instruction'class);

end entity instruction_reg;

8

July 1997 Ashenden, Wilsey & Martin — SUAVE 15

Interaction: Encapsulation and Derivation

• Adopt mechanisms from Ada-95
– tagged private type

• can be extended without revealing details of parent
– private extension

• concrete details of extension hidden

• See papers for examples

July 1997 Ashenden, Wilsey & Martin — SUAVE 16

Genericity
• Object-orientation is not a panacea

– OO extension meets many, but not all, objectives
– Doesn’t include type genericity needed for reuse

• VHDL has basic mechanism for genericity
– generic constants

• Adopt generics from Ada-95
– modified to integrate with VHDL generics
– formal types, subprograms, packages
– allow generic clause in subprograms and packages

• Instantiation done at elaboration-time

9

July 1997 Ashenden, Wilsey & Martin — SUAVE 17

Formal Types in Entities
entity generic_multiplexer is

generic (type data_type is private);
port (control : in bit; in0, in1 : in data_type;

data_out : out data_type);
end entity generic_multiplexer;

architecture data_flow of generic_multiplexer is
begin

with control select
data_out <= in0 when '0',

in1 when '1';
end architecture data_flow;

int_mux : entity work.generic_multiplexer(data_flow)
generic map (data_type => integer);
port map (. . .);

July 1997 Ashenden, Wilsey & Martin — SUAVE 18

Formal Types in Packages
package sets is

generic (type element_type is private);

type set is access private;

constant empty_set;
procedure copy (from : in set; to : out set);
function "+" (R : element_type) return set;
impure function "+" (L : set; R : element_type) return set;
. . .

private

type element_node;
type element_ptr is access element_node;
type element_node is record

next_element : element_ptr;
value : element_type;

end record element_node;
type set is new element_ptr;

end package sets;

10

July 1997 Ashenden, Wilsey & Martin — SUAVE 19

Formal Types in Packages (cont)

type test_vector is . . .

package test_sets is
new sets

generic map (element_type => test_vector);
use test_sets.all;

variable tests_to_perform : test_sets.set := empty_set;
. . .

test_to_perform := test_to_perform + new_test;

July 1997 Ashenden, Wilsey & Martin — SUAVE 20

Interaction: Derivation and Genericity

• Formal derived type
– provides mechanism for “mix-in” inheritance
– obviates need for multiple inheritance in many cases

11

July 1997 Ashenden, Wilsey & Martin — SUAVE 21

Derivation and Genericity Example

package indexed_addressing_mixin is
generic (type parent_instruction is

abstract new instruction with private);
type indexed_instruction is new instruction with record

index_base, index_offset : register_number;
end record indexed_instruction;

function effective_address (instr : indexed_instruction) return address;
end package indexed_addressing_mixin;

type load_instruction is abstract new instruction with record
destination : register_number;

end record load_instruction;

package indexed_loads is
new indexed_addressing_mixin

generic map (parent_instruction => load_instruction);
alias indexed_load_instruction is indexed_loads.indexed_instruction;

July 1997 Ashenden, Wilsey & Martin — SUAVE 22

Entity/Architecture Inheritance
• Other proposals

– derived entities inherit ports/declarations
– derived architectures inherit declarations/statements

• Not included in SUAVE
– yet to be convinced that it’s worth it
– compositional hierarchy more appropriate
– counter-with-output-enable “is-a” counter
– counter-with-output-enable “contains-a” counter

12

July 1997 Ashenden, Wilsey & Martin — SUAVE 23

Concurrency and Communication
• Other proposals

– add procedural operations to entity interface
– view entity as class of active objects
– implies monitor-based semantics

• concurrency-control approach

• Not included in SUAVE
– true message-passing approach more appropriate

• used by other system-level modeling languages
• fits in better with VHDL concepts
• future work

July 1997 Ashenden, Wilsey & Martin — SUAVE 24

Conclusion
• SUAVE improves VHDL’s support for modeling

– across the spectrum
• system-level down to gate level

– improves encapsulation, inheritance, genericity
– integrates cleanly with existing language

• Full details in papers and TRs
– http://www.ececs.uc.edu/~petera/suave.html

