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Outline
• Design Objectives
• Overview of Extensions

– encapsulation
– type derivation & inheritance
– genericity

• What we have not done (yet)
– entity/architecture inheritance
– concurrency and communication
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Design Objectives
• Support high-level modeling

– improve encapsulation and information hiding
– provide for hierarchies of abstraction

• Support re-use and incremental development
– polymorphism, dynamic binding, type genericity

• Preserve capability for synthesis & other analysis
• Support hw/sw codesign

– improved integration with programming languages

. . .
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Design Objectives (cont)

• Refinement through elaboration of components
– avoid repartitioning

• Preserve correctness of existing models
• Design principles from VHDL-93

– preserve “conceptual integrity”
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Overview of Extensions
• Borrow heavily from Ada-95

– VHDL already has much in common with Ada
– borrow encapsulation, information hiding, inheritance,

genericity features

• Class-based cf programming by extension
– class-based

• replicates package features
• choose one or the other, but not both!

– programming by extension
• integrates better with signal semantics
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Encapsulation
• Strengthen existing package feature

– used to define secure ADTs

• Package can have visible part and private part
• Private type

– declare partial view in visible part
• includes some contractual details

– declare full view in private part

• Allow packages in any declarative region
– local ADTs
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Encapsulation Example
package complex_numbers is

type complex is private;

constant i : complex;
function re ( C : complex ) return real;
function im ( C : complex ) return real;
function "abs" ( C : complex ) return real;
function arg ( C : complex ) return real;

function "+" ( L, R : complex ) return complex;
function "–" ( L, R : complex ) return complex;
. . .

private

type complex is
record

re, im : real;
end record complex;

end package complex_numbers;
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Encapsulation Example (cont)

use complex_numbers.all;

signal a, b, sum : complex;
signal enable : bit;
. . .

sum <= a + b after 10 ns when enable = '1' else
0.0 + 0.0*i after 10 ns;
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Encapsulation: Contracts
• Limited private type

– assignment not allowed, no predefined equality
– use when deep copy/compare needed

• Access private type
– needed if full view includes access types
– can’t be used for signals
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Type Derivation and Classes
• Adopt from Ada-95:

– tagged records
– type derivation

• type derived from tagged record can add elements
• inherits primitive operations from parent type
• can override/augment operations

– class-wide types, class-wide operations
• T’Class is hierarchy of types derived from T
• dynamic dispatching

– abstract type and operations

• Signals and dynamic variables can be class-wide
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Type Derivation Example
type instruction is

tagged record
opcode : opcode_type;

end record instruction;

function privileged ( instr : instruction;  mode : protection_mode )
return boolean;

procedure disassemble ( instr : instruction;  file output : text );

type ALU_instruction is new instruction with
record

destination, source_1, source_2 : register_number;
end record ALU_instruction;

procedure disassemble ( instr : ALU_instruction;  file output : text );
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Type Derivation Example (cont)

type memory_instruction is abstract new instruction with record
base : register_number;
offset : integer;

end record memory_instruction;

function effective_address_of ( instr : memory_instruction ) return natural;

procedure perform_memory_transfer ( instr : memory_instruction ) is abstract;

type load_instruction is new memory_instruction with record
destination : reg_number;

end record load_instruction;

procedure perform_memory_transfer ( instr : load_instruction );

type store_instruction is new memory_instruction with record
source : reg_number;

end record store_instruction;

procedure perform_memory_transfer ( instr : store_instruction );
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Type Derivation Example (cont)

procedure execute ( instr : instruction'class ) is
begin

disassemble ( instr, trace_file );
if privileged(instr) and execution_mode = user then

handle_privilege_violation;
else

. . .
end if;

end procedure execute;

entity instruction_reg is
port ( load_enable : in bit;

instr_in : in instruction'class;
instr_out : out instruction'class );

end entity instruction_reg;
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Interaction: Encapsulation and Derivation

• Adopt mechanisms from Ada-95
– tagged private type

• can be extended without revealing details of parent
– private extension

• concrete details of extension hidden

• See papers for examples
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Genericity
• Object-orientation is not a panacea

– OO extension meets many, but not all, objectives
– Doesn’t include type genericity needed for reuse

• VHDL has basic mechanism for genericity
– generic constants

• Adopt generics from Ada-95
– modified to integrate with VHDL generics
– formal types, subprograms, packages
– allow generic clause in subprograms and packages

• Instantiation done at elaboration-time
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Formal Types in Entities
entity generic_multiplexer is

generic ( type data_type is private );
port ( control : in bit;  in0, in1 : in data_type;

data_out : out data_type );
end entity generic_multiplexer;

architecture data_flow of generic_multiplexer is
begin

with control select
data_out <= in0 when '0',

in1 when '1';
end architecture data_flow;

int_mux : entity work.generic_multiplexer(data_flow)
generic map ( data_type => integer );
port map ( . . . );
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Formal Types in Packages
package sets is

generic ( type element_type is private );

type set is access private;

constant empty_set;
procedure copy ( from : in set;  to : out set );
function "+" ( R : element_type ) return set;
impure function "+" ( L : set;  R : element_type ) return set;
. . .

private

type element_node;
type element_ptr is access element_node;
type element_node is record

next_element : element_ptr;
value : element_type;

end record element_node;
type set is new element_ptr;

end package sets;
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Formal Types in Packages (cont)

type test_vector is . . .

package test_sets is
new sets

generic map ( element_type => test_vector );
use test_sets.all;

variable tests_to_perform : test_sets.set := empty_set;
. . .

test_to_perform := test_to_perform + new_test;
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Interaction: Derivation and Genericity

• Formal derived type
– provides mechanism for “mix-in” inheritance
– obviates need for multiple inheritance in many cases
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Derivation and Genericity Example

package indexed_addressing_mixin is
generic ( type parent_instruction is

abstract new instruction with private );
type indexed_instruction is new instruction with record

index_base, index_offset : register_number;
end record indexed_instruction;

function effective_address ( instr : indexed_instruction ) return address;
end package indexed_addressing_mixin;

type load_instruction is abstract new instruction with record
destination : register_number;

end record load_instruction;

package indexed_loads is
new indexed_addressing_mixin

generic map ( parent_instruction => load_instruction );
alias indexed_load_instruction is indexed_loads.indexed_instruction;
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Entity/Architecture Inheritance
• Other proposals

– derived entities inherit ports/declarations
– derived architectures inherit declarations/statements

• Not included in SUAVE
– yet to be convinced that it’s worth it
– compositional hierarchy more appropriate
– counter-with-output-enable “is-a” counter
– counter-with-output-enable “contains-a” counter
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Concurrency and Communication
• Other proposals

– add procedural operations to entity interface
– view entity as class of active objects
– implies monitor-based semantics

• concurrency-control approach

• Not included in SUAVE
– true message-passing approach more appropriate

• used by other system-level modeling languages
• fits in better with VHDL concepts
• future work
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Conclusion
• SUAVE improves VHDL’s support for modeling

– across the spectrum
• system-level down to gate level

– improves encapsulation, inheritance, genericity
– integrates cleanly with existing language

• Full details in papers and TRs
– http://www.ececs.uc.edu/~petera/suave.html


