
Accepted for publication in Proceedings of VHDL International User’s Forum Spring ’98 Conference.

© 1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers
or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Considerations on System-Level Behavioural and Structural
Modeling Extensions to VHDL

Peter J. Ashenden
Dept. Computer Science

University of Adelaide, SA 5005
Australia

petera@cs.adelaide.edu.au

Philip A. Wilsey
Dept. ECECS, PO Box 210030

University of Cincinnati
Cincinnati, OH 45221-0030, USA

phil.wilsey@uc.edu

Abstract

This paper reviews the requirements on a language for mo-
deling behaviour and structure at the system level, and con-
siders possible approaches to extending VHDL to meet
these requirements. Modeling issues that obtain in a sys-
tem-level design language are identified, including ab-
straction of data, concurrency, communication and timing,
and design refinement. Some system-level design lan-
guages and notations are surveyed, and previous proposals
to extend VHDL for system-level design are reviewed. Spe-
cific language design issues for extending VHDL are dis-
cussed, and some alternative solutions are presented.

1. Introduction

One of the main challenges facing designers of complex in-
tegrated systems is that of managing complexity. Many
systems are now composed of complex digital and analog
hardware, managed by embedded software. In some cases,
they must communicate with other systems, forming part
of a larger distributed system.

The key to managing complexity in such systems is the
use of abstraction. Designers focus first on the abstract
properties of a system in various domains, and devise a sys-
tems architecture that will satisfy the requirements placed
on the system. They may devise multiple architectures,
analyze them, and choose among them based on the ana-
lyses. The domains under consideration include behaviour,
structure, performance, physical arrangement and packag-
ing, power consumption, thermal, cost, etc. In each do-
main, abstraction is used to focus on the major aspects of
the system, and minor detail is ignored. Judicious choice
of abstractions makes architectural design and analysis

tractable, and aids subsequent partitioning and refinement
of the system design.

A number of specialized languages may be used in de-
signing a system. Some, such as the Unified Modeling
Language (UML) [17, 35], are primarily notations for ex-
pressing the relationships between the various components
that make up a system. Others, including those discussed
in this paper, focus on expressing the required behaviour
and logical organization of a system and its components.
Once behaviour has been captured using such languages,
the system can be simulated to verify that it meets its re-
quirements. Subsequently, it can be manually or automati-
cally refined to a more detailed implementation in terms of
hardware, software, or a combination of both.

Hardware description languages also focus on describ-
ing systems in the behavioural and structural domains.
However, due to their origin as languages for hardware de-
sign, they do not include strong capabilities for abstracting
over data and for describing complex interactions. For ex-
ample, in Verilog [26, 39], data types are closely bound to
their binary representation, and signalling between mod-
ules includes aspects of electrical implementation. VHDL
[2, 25], on the other hand, allows more abstract expression
of data, since its type system is similar to that of conven-
tional programming languages. However, its signalling
features are still closely bound to electrical implementa-
tion.

This paper reviews the requirements on a language for
modeling behaviour and structure at the system level, and
considers possible approaches to extending VHDL to meet
these requirements. Section 2 reviews the modeling issues
that obtain in a system-level design language. Section 3
briefly surveys system-level design languages and nota-
tions that are widely used, and Section 4 surveys previous
proposals to extend VHDL for system-level design. Sec-
tion 5 focuses on specific language design issues for ex-

* This work was partially supported by Wright Laboratory under USAF contract F33615-95-C-1638.

tending VHDL, and discusses some alternative solutions.
Section 6 summarizes and presents conclusions.

2. Modeling Issues for System-Level Design

At the system level, a system can be modeled as a collection
of active objects that react to events, including communica-
tion of data between objects and stimuli from the enclosing
environment. Abstraction is needed in a number of areas
to make system-level behavioural modeling tractable:
· abstraction of data,

· abstraction of concurrency, and

· abstraction of communication and timing.

It is important to note that the issues of concurrency and
communication have been widely discussed in the litera-
ture on concurrent programming languages. (See Ballet al
[7] for a survey.) We draw on experience from that field in
considering the design of system-level modeling lan-
guages.

Early in the design flow, the representation of data in a
system should be at a high level of abstraction. For exam-
ple, data may initially be modeled using uninterpreted
tokens, allowing performance of a design to be estimated
based on token flow rates and queuing delays. When data
types are refined to concrete representations, abstract data
types and object-oriented techniques [10] can be used to
manage the increased complexity. Refinement to hard-
ware-specific representations should be deferred to later in
the design flow. Thus, a requirement for a system-level de-
sign language is a facility for expressing uninterpreted and
abstract data types.

A system-level design language needs to allow expres-
sion of concurrent processes representing the active objects
in a system. In some systems, the number of active objects
is not statically determined, but may vary during operation
of the system. For example, in a client/server system, new
service agents may be created as requests arrive from cli-
ents, allowing multiple requests to be processed concur-
rently. In order to describe such systems, a system-level
design language must allow expression of process types
that may be dynamically instantiated and terminated.

At the system level, processes representing active ob-
jects must interact to communicate data and to synchronize
their operation. The simplest form of interaction is mes-
sage passing, involving the transfer of data from a sender
process to a receiver. The act of message passing can also
be used to synchronize the processes. We focus on message
passing in this paper, as it a natural abstraction of com-
munication common to both software and hardware. Other
forms of interaction, such as rendezvous and remote pro-
cedure call are possible [7], but are oriented specifically to-
ward software implementation. They can, however, be
expressed in terms of message passing.

There are two ways in which message passing abstracts
away from the details of communication in hardware de-
scription languages. First, communication events are not
tied to specific times, but rather are simply ordered by rela-
tive time of sending. This causality-based ordering is
weaker and less constraining than clock-time ordering, and
so is more appropriate at the early stages of design. Se-
cond, communication events may be queued (either by
queuing messages or processes), rather than relying on the
recipient sensing data at the correct time. This allows mul-
tiple communication events to form a stream or a transac-
tion without the need for detailed signalling protocols.

System-level design occurs at the early part of a process
that involves refinement to lower-level hardware and soft-
ware implementations [18]. A model at the system level
should be expressed in a form that enables verification that
a refinement correctly implements the model. Possible ap-
proaches include behavioural synthesis [32] (correct by
construction), and formal verification using model check-
ing and equivalence checking [23, 33]. Refinement to a
software implementation is facilitated by a system-level
modeling language that is closely related to programming
languages. In principle, the hardware and software imple-
mentations could be expressed in the same language as the
system-level model, thus avoiding semantic mismatches
between different languages in the design flow.

Given a system partitioned at the architectural level, it
is important to specify the interfaces between the modules.
Incorrect implementation of interfaces is a significant
source of defects in system designs. Correct implementa-
tion is aided by explicitly modeling the interfaces, includ-
ing the data representations used and the communication
protocols. Explicitly modeled interfaces can also be used
to aid refinement of the system, by describing transforma-
tions between higher-level and lower-level representations
and protocols.

3. Review of System-Level Design Lan-
guages

There are several languages for system-level specification
and design that are widely used. A number of them, such
as Z [15, 36] and LOTOS [9, 28], focus on specifying a sys-
tem in a declarative style. Others adopt a process-oriented
approach to describing the structure and behaviour of a sys-
tem at a high level of abstraction. In this section, we review
four languages in the latter category, showing how they do,
or do not, address the requirements discussed in Section 2.

3.1 StateCharts

StateCharts [20] is a graphical notation for expressing the
behaviour of a system. Its abstraction of concurrency and
communication is based on a extended finite state machine
(FSM) model. Extensions include hierarchical states, in
which a superstate represents a subgraph of theFSM; the

machine is in the superstate when it is in any of the sub-
states. StateCharts also allows concurrent composition of
states; the machine is in both of the states. If the concur-
rently composed states are hierarchical, those states act as
concurrent submachines. The global machine is in some
substate of each of the concurrently composed states.
Thus, each concurrently composed state can be viewed as
a concurrent process in the model. In StateCharts, these
processes are statically specified using a graphical editor.
The effect of a StateChart on its environment is specified
by actions associated with states and transitions. Actions
include starting and stopping activities, such as generating
outputs on signals connected to the environment.

Transitions in a StateCharts FSM occur are triggered by
events, and may optionally be guarded. An event may be
input from the environment, a transition in a concurrently
composed submachine, or a time-out. Guard expressions
may be be predicates over the current state of concurrently
composed submachines. As Harel comments [20, page
264], the use of the state of one submachine to cause events
or guard transitions in other submachines implies a form of
broadcast communication between the processes repre-
senting submachines. There is no explicit timing involved
in the StateCharts notation beyond the causal ordering of
transitions fired by events, with actions being performed
instantaneously.

While the StateCharts notation addresses the issues of
abstraction of concurrency, communication and timing, al-
beit with a somewhat limited set of abstractions, it does not
adequately address abstraction of data. Using events for
communication limits StateCharts to uninterpreted model-
ing of data. Thus, the notation is mainly useful for model-
ing the control-oriented aspects of a system. The notation
also does not deal with modeling of the interfaces between
components. Indeed, it violates the principles of modulari-
ty and information hiding (see Booch [10]) by allowing
state information nested inside of one submachine to be
names in event and guard expressions in other subma-
chines.

The StateCharts notation has been adopted in the Uni-
form Modeling Language (UML) [17, 35]. In that version
of the notation, events can be parameterized, allowing
communication of data between processes via events;
states can have variables; and actions can be procedural, al-
lowing update of variables and sending of messages to ob-
jects.

3.2 Estelle

Estelle [11, 29] is an ISO standard language for describing
distributed information processing systems. The con-
currency aspects of a system are described using a hier-
archy of instances of modules, each of which is a
concurrent process. A module has interaction points for
communication, and may have locally declared variables

and nested module instances. The behaviour of a module
is specified in terms of an extended non-deterministic state
machine, with Pascal-like statements included as transition
actions. Transition conditions are expressed in terms of
message arrival at an interaction point, guarded by boolean
expressions. Modules may be statically instantiated, or
may be dynamically instantiated as part of transition ac-
tions. The modules within a group of processes called a
subsystem execute with synchronous parallelism; first, en-
abled transitions are selected, then the selected transitions
are executed. Modules in different subsystems are per-
mitted to execute with asynchronous parallelism.

Communication in an Estelle description takes place
using buffered asynchronous message passing over typed
links between interaction points. The links may be stati-
cally created, or dynamically created as part of transition
actions. Estelle provides for abstraction of interfaces in the
form of channels, which specify a protocol for message ex-
change over linked interaction points. A channel defines
a set of roles, and, for each role, a set of allowed messages
that may be communicated. An interaction point of a mod-
ule may be declared to take on a particular role of a de-
clared channel type. While Estelle does provide richer
facilities for expressing data than StateCharts, they do not
extend to expression of abstract data types.

3.3 SDL

SDL [16, 31], like StateCharts, is a language for describing
the behaviour and structure of systems. The language has
both textual and graphical notations, with the same under-
lying semantics. A system is described as a statically speci-
fied hierarchy of process sets. Within each set, processes
may be either statically or dynamically created instances of
declared process types. Process sets are connected with
statically specified typed channels (signal routes), over
which the processes may communicate using buffered
asynchronous message passing. A process may have lo-
cally declared variables. The behaviour of a process is ex-
pressed in terms of an extended finite state machine model.
Transitions are enabled by message arrival, and possible
actions on transitions include variable assignment, process
creation, sending a message, and a form of remote proced-
ure call.

SDL has sophisticated features for abstracting over data
types, based on the ACT-ONE model for defining abstract
data types (ADTs) using axiomatic semantics [13]. A
number of types are predefined, including numeric,
boolean, character and time types. The model also allows
specification of composite types, such as record, array and
list types.

The revision of the SDL standard in 1992 enhanced the
language to include object-oriented features. For example,
process types may be specialized through inheritance; the
specialized process type inherits the variables, states and

transitions of the parent, and may add new variables, states
or transitions. Data types and signal types may also be spe-
cialized through inheritance, with new elements being
added to the specialized types.

3.4 CSP

Hoare initially proposed Communicating Sequential Pro-
cesses (CSP) as a programming language for concurrent
systems [21], and subsequently developed the notation into
a formal mathematical theory of communicating concur-
rent systems [22]. In the programming language form, a
system is described as a set of statically specified processes
that communicate through statically specified channels
using synchronous message passing. Each process con-
tains sequentially executed actions, including variable as-
signment, message sending and message reception. While
the language does provide abstraction of concurrency,
communication and timing, it does not support abstraction
of data beyond a few primitive data types, nor abstraction
of interfaces. The original formulation of the language was
not intended as a full-scale language for serious use. In-
stead, it formed the basis from which the mathematical
theory was developed. While the original form of CSP lead
to the programming language OCCAM [27], the math-
ematical theory is now used as a formal semantic theory for
programming languages, and for formal specification of
software systems.

4. Previous Proposals for Extending VHDL

In previous papers [3, 4] we have reviewed a number of pro-
posals that suggest using object-oriented language features
to support system-level modeling. They seek to represent
a system as a set of objects that communicate by invoking
operations in other objects.

Cabanis et al [12] add a class construct to the language,
similar to the class construct in C++, and specify a weak
form of concurrency control for managing access to shared
objects by multiple processes. The Vista OO-VHDL lan-
guage described by Swamy et al [37] and the OOVHDL
language described by Benzakki and Djafri [8] both extend
the notion of a VHDL entity, viewing it as a form of class
that can include operations to be invoked by processes in
other design units. The Objective VHDL language de-
scribed more recently by Radetzki et al [34] also follows
this approach, but does not specify the means of communi-
cation by which operations are remotely invoked. Instead,
they assume that the designer will customize a communica-
tion protocol from a library to provide the required com-
munication, and have the receiving object dispatch to the
operation. In practice, their language design makes this
quite cumbersome, detracting from abstraction otherwise
afforded.

Other proposals extend VHDL with declarative con-
structs for specifying the behaviour and other aspects of a
system. In VSPEC [1], for example, required behaviour is
described using axiomatic specification techniques, and
constraints are specified in the form of relations over con-
straint variables. Including these specifications in a model
allows tools to automatically verify that an implementation
meets the specifications. Another proposed extension,
VHDL+ [24], provides a mechanism for abstracting the
interfaces between partitions in a system-level design, and
for specifying refinements of interfaces to lower levels of
abstraction. These proposals address the wider context of
system-level modeling. Since this paper focuses on behav-
ioural and structural aspects, we defer consideration of
these proposals to a later paper.

5. Language Design Issues for Extending
VHDL

In this section, we discuss ways in which VHDL might be
extended to address the requirements for system-level be-
havioural and structural modeling laid out in Section 2. An
important consideration in this discussion is ensuring that
the extensions integrate cleanly with existing language
mechanisms, and avoiding replication of mechanisms.
While we illustrate possible extensions with examples, no
concrete language proposal is implied.

5.1 Data Abstraction

The type system of VHDL is closely related to that of the
Ada programming language [30], and allows for a signific-
ant degree of data abstraction above the level of binary-en-
coded values. For system-level modeling, abstract data
types provide a further level of abstraction. VHDL has re-
latively weak facilities for describing abstract data types,
and a number of proposals have been put forward for
strengthening the language with object-oriented features.
We have previously surveyed these proposals [4], and have
proposed our own extensions [6] based on the facilities of
Ada.

5.2 Communication Abstraction

In Section 2 we identified message passing as a more ab-
stract form of communication than communication
through signal assignment. Signals in VHDL can be
viewed as statically instantiated, named communication
channels. However, the semantics of passing values via
signals is based on a low-level model of electrical imple-
mentation, and is significantly different from the forms of
message passing seen in the languages discussed in Section
3. At best, VHDL signal assignment might be viewed as
asynchronous unbuffered message passing, leading to loss
of messages if the receiver is not ready to accept them.

There are a number of issues to consider when designing
message-passing communication mechanism in VHDL:

· whether the message send operation should name a
target process as the recipient, or a communication
channel as the transmission medium,

· whether message passing should be asynchronous or
synchronous,

· whether to allow broadcasting of messages, and

· how message passing integrates with concrete signal as-
signment.

Given that a description may be refined to a hardware
implementation in which communication occurs via
named signals, use of named communication channels is
the appropriate choice for the first issue. It isa more natural
abstraction of the communication mechanism used in hard-
ware description. Furthermore, it allows a communicating
process to be encapsulated with formal channels. Such a
process can then be multiply instantiated, with each in-
stance communicating with different partner processes.

The choice between asynchronous and synchronous
message passing is not simple; both forms can be seen in
different system-level design languages. On the one hand,
asynchronous message passing has the appeal of freeing
the designer from ensuring that sending and receiving pro-
cesses are ready to communicate at the same time. Mes-
sages from the sender are simply buffered until the receiver
is ready to accept them. Furthermore, asynchronous mes-
sage passing can be seen as an abstraction of signal assign-
ment, since the latter is also a form of asynchronous
communication. However, it is difficult to reason about
systems described in terms of asynchronous message pass-
ing. Proofs that messages are eventually received must
either rely on the assumption of indefinitely large buffering
capacity, or take account of some bounded capacity and the
possibility of system failure due to buffer overflow. When
a system is implemented, if registers of FIFOs are used to
implement buffering of communication, equivalence
checking must also take account of the finite buffering pro-
vided in the implementation.

Synchronous message passing, on the other hand, is
more amenable to formal analysis, and properties such as
freedom from deadlock and livelock can be expressed
using CSP [22], for example, as the underlying mathemati-
cal model. Furthermore, synchronous message passing
more accurately reflects the desired behaviour of hardware
modules that synchronize during communication, for ex-
ample, using hand-shaking or a common clock without
buffering.

Both asynchronous and synchronous message passing
can be seen as valid abstractions of communication im-
plemented in hardware and software. Each form can be ex-
pressed in terms of the other. For example, asynchronous
communication can be expressed in terms of synchronous
communication using explicitly instantiated message
queues, and synchronous communication can be expressed

in terms of asynchronous communication using explicit
handshaking. It may be appropriate to include mechanisms
for both forms in the language, though this adds complexi-
ty. Further research is needed to resolve this issue.

In considering the third issue, the choice of communica-
tion via named channels means that broadcasting amounts
to multiple processes receiving from a given channel. This
parallels hardware communication, in which a signal from
one source can be connected to several receivers. If syn-
chronous communication is used, the presence of multiple
receivers implies a barrier beyond which none of the re-
ceivers nor the sender can pass until message transmission
occurs. If asynchronous communication is used, each re-
ceiver accepts a copy of the message when it is ready. The
sender proceeds as soon as it has sent the message.

In considering the fourth issue, one might attempt to ex-
press message passing as form of signal assignment by gen-
eralizing the existing signal assignment semantics into a
more abstract form. This involves abstracting away from
the detailed notions of time and delay associated with sig-
nal assignment. Further, the details of editing transaction
lists in signal drivers should be removed, and the need for
resolution of multiple driving values should be avoided.
One way in which these requirements can be met is to pro-
vide an abstract form of signal, leading to buffered asyn-
chronous communication. Message sending simply
involves queuing a value on the signal, and message recep-
tion involves accepting the next value from the queue. This
might be expressed in a language extension as a new class
of abstract signal. For example, such signals might be used
to communicate with a process representing an elevator in
a building as follows:

signal elevator_call : floor_number abstract;
signal elevator_location : floor_number abstract;
elevator : process is
begin

. . .
wait on elevator_call; -- receive next message
calling_floor := elevator_call;
elevator_location <= current_floor; -- send message
. . .

end process elevator;

Given such an extension, it would be necessary to allow
specification of abstract signals in interfaces. For example,
an entity interface for an operator console might be written
as follows:

entity operator_console is
port (signal status : in status_msg abstract;

signal command : out command_msg abstract);
end entity operator_console ;

Given the significant difference between the semantics
of such abstract signals and the concrete signals currently
in the language, it may be more appropriate to cast abstract
signals as a separate syntactic construct, for example, as
communication channels. This approach would also be

preferred if synchronous message passing were adopted.
The above examples might be rewritten using a channel
construct as follows:

channel elevator_call : floor_number;
channel elevator_location : floor_number;

elevator : process is
begin

. . .
receive calling floor from elevator_call;
send current_floor to elevator_location;
. . .

end process elevator;

and

entity operator_console is
port (channel status : in status_msg;

channel command : out command_msg);
end entity operator_console ;

5.3 Process Abstraction

The model of concurrency in VHDL is based on processes
which are statically specified in architecture bodies. How-
ever, the language does not allow specification of a process
type that can be separately instantiated. Instead, the pro-
cess must be encapsulated in a design entity and instan-
tiated through the component instantiation mechanism.
This is cumbersome, and has the disadvantage of implying
structural partitioning.

This deficiency can be overcome by extending VHDL
to include process types, abstracting over the statically spe-
cified processes currently provided in the language. Pro-
cesses interact with their environment through the
communication mechanism provided by the language, so
a process abstraction should include an interface in which
formal communication objects can be specified. A process
type can be statically instantiated as a concurrent statement
within an architecture body, with bindings made between
formal and actual communication objects.

As an example, consider a process type representing an
abstraction of the elevator described above, communicat-
ing using message channels:

type elevator is process body
port (channel elevator_call : in floor_number;

channel elevator_location : out floor_number);
begin

. . .
receive calling floor from elevator_call;
send current_floor to elevator_location;
. . .

end process elevator;

This process type might be instantiated to represent multi-
ple elevators in a building:

for elevator_number in
1 to number_of_elevators generate

an_elevator : process elevator
port map (calling_floor => call(elevator_number),

elevator_location
=> location(elevator_number));

5.4 Dynamic Instantiation

Another deficiency in VHDL for system-level modeling is
that it does not provide for dynamic creation of processes,
preventing it from being used to model systems as dynami-
cally varying collections of active objects. Process types,
described in Section 5.3, can be used as the basis for dy-
namic creation of processes in an extension to VHDL. As
the example below shows, channel types and dynamically
created message channels may also be needed to communi-
cate with dynamically created processes. The program-
ming language Ada [30] provides a good model for the
semantics of process instantiation, activation and termina-
tion, since the process types described above are similar to
task types in Ada.

An example of a system requiring dynamic process in-
stantiation is a client-server system in which the server is
multithreaded, allowing it to serve multiple transactions
concurrently. If the number of clients to be served concur-
rently is not known a priori, the server may create agents
dynamically to perform the transactions. The organization
of the system is illustrated in Figure 1. The system may ul-
timately be implemented in software, but it desirable to
model it early in the design flow before hardware/software
partitioning is performed.

Figure 1. A client-server system
with dynamically created agents.

Client Server

Agent

request

result forwarded
request

dynamically
created

The types representing the message channels between
processes are described as follows:

type result_value is . . .;
type result_channel is channel result_value;
type result_ref is access result_channel;

type request_info is record
. . .; -- info for the transaction
result_please : result_ref;

end record request_info;
type request_channel is channel request_info;
type request_ref is access request_channel;

The type result_channel represents a channel for receiving
result messages from the server, and the type result_ref is
a reference to such a channel. The type request_info is the
message type for requests to the server. It includes a refer-
ence to the channel upon which the client expects to receive
the result of the request. The type request_channel repre-
sents a channel for sending requests, and the type re-
quest_ref is a reference to a request channel.

A client is described by the following process type:

type client is process body
port (channel request : out request_channel);

variable result : result_ref := new result_channel;

begin
. . .
send (. . ., result) to request;
receive . . . from result.all;
. . .

end process body client;

The client’s port is a channel upon which it sends requests.
Part of the client’s state is a dynamically created channel
for receiving transaction results. When the client makes a
request, it includes the reference to its result channel aspart
of the request.

The server is described by the following process type:

type server is process body
port (channel request : in request_channel);

type agent is process body
port (channel request : in request_channel);

variable info : request_info;

begin -- agent
receive info from request;
. . .; -- perform transaction
send . . . to info.result_please.all;
exit;

end process body agent;

type agent_ref is access agent;

variable info : request_info;
variable new_agent_request : request_ref;
variable new_agent : agent_ref;

begin -- server
receive info from request;
new_agent_request := new request_channel;
new_agent := new agent

port map (new_agent_request.all);
send info to agent_request.all;

end process body server;

The server hasa channel port for receiving requests, and en-
capsulates a process type for agents, which also has a chan-
nel port for requests. The body of the server receives a
request message on its request channel, and saves the re-
quest in theinfo variable. It then dynamically creates a new
request channel and a new agent process, with the agent’s
request channel port mapped to the new request channel.
The server then forwards the saved request message via the
new channel. The newly created agent receives the for-
warded message, performs the transaction, and sends the
results to the channel referenced in the request message.
The agent then terminates. While the agent was processing
the transaction, the server may have received further re-
quest messages and created agents to process them concur-
rently.

5.5 Other Issues

One of the main motivations for extendingVHDL with sys-
tem-level modeling features is to allow it to be used early
in the design flow, before partitioning between hardware
and software implementation is performed. Such exten-
sions improve the useability of the language for perform-
ance modeling and for validation of functional
requirements. The extensions should integrate with tools
and methodologies for hardware/software codesign and
synthesis [14, 19, 38], aiding refinement of system-level
models to lower-level implementations. Techniques for
automatic cosynthesis rely on partitioning the model into
execution threads at the process level, at the basic-block
level, or at some intermediate level (for example, at the
level of sequences between communication operations).
The cosynthesis tool partitions based on cost and perform-
ance constraints, factoring in the overhead in communicat-
ing between hardware and software components, and
generates software instruction sequences and hardware
modules. This process is assisted by an input language that
avoids bias toward either hardware or software imple-
mentation, and that can be analyzed to determine pro-
cesses, communication operations and basic blocks. The
process and communication models discussed in previous
sections meet this requirement.

Extensions for system-level modeling should not be
added as an isolated aspect of the language. They should
be closely integrated with other semantic mechanisms, and
preserve the underlying design philosophies of the lan-
guage. Furthermore, system-level modeling extensions
must integrate with other extensions, such as those under
study within IEEE working groups for object-oriented lan-
guage features and for interface specification.

6. Conclusion

In this paper we have identified issues that must be ad-
dressed by system-level description languages, and fo-
cussed on issues for extending VHDL for system-level

behavioural and structural modeling. Such extensions
would allow VHDL to be used early in the design flow,
where informal methods are often used today. Use of more
rigorous modeling methods allows validation of require-
ments through simulation and formal analysis, and allows
refinement of the system design to be verified.

The SUAVE Project [5], has already defined extensions
for adding both object-oriented and genericity features to
VHDL, improving the language’s expression of data ab-
stractions. Implementation work on these extensions is in
progress. Further work in SUAVE will address extensions
to the concurrency and communication models, based on
the analysis of issues presented in this paper.

References

[1] P. Alexander and P. Baraona, “Extending VHDL to
the System Level,” Proceedings of VHDL
International Users’ Forum Fall 1997 Conference,
Arlington, VA, pp. 96–104, 1997.

[2] P. J. Ashenden,The Designer’s Guide to VHDL. San
Francisco, CA: Morgan Kaufmann, 1996.

[3] P. J. Ashenden and P. A. Wilsey, A Comparison of
Alternative Extensions for Data Modeling in VHDL,
Dept. Computer Science, University of Adelaide,
Technical Report TR-02/97,
ftp://ftp.cs.adelaide.edu.au/pub/VHDL/TR-data-mo
deling.ps, 1997.

[4] P. J. Ashenden and P. A. Wilsey, “Considerations on
Object-Oriented Extensions toVHDL,” Proceedings
of VHDL International Users Forum Spring 1997
Conference, Santa Clara, CA, pp. 109–118, 1997.

[5] P. J. Ashenden and P. A. Wilsey,SUAVE: A Proposal
for Extensions to VHDL for High-Level Modeling,
Dept. Computer Science, University of Adelaide,
Technical Report TR-97-07,
ftp://ftp.cs.adelaide.edu.au/pub/VHDL/TR-extensio
ns.pdf, 1997.

[6] P. J. Ashenden and P. A. Wilsey, “SUAVE: Painless
Extension for an Object-OrientedVHDL,”
Proceedings of VHDL International Users Forum
Fall 1997 Conference, Washington, DC, 1997.

[7] H. E. Bal, J. G. Steiner, and A. S. Tanenbaum,
“Programming Languages for Distributed
Computing Systems,”ACM Computing Surveys, vol.
21, no. 3, pp. 261–322, 1989.

[8] J. Benzakki and B. Djaffri, “Object Oriented
Extensions to VHDL: the LaMI Proposal,”
Proceedings of Conference on Hardware
Description Languages ’97, Toledo, Spain, pp.
334–347, 1997.

[9] T. Bolognesi and E. Brinksma, “Introduction to the
ISO Specification Language LOTOS,”Computer
Networks and ISDN Systems, vol. 14, , pp. 25–59,
1987.

[10] G. Booch,Object-Oriented Analysis and Design with
Applications. Redwood City, CA:
Benjamin/Cummins, 1994.

[11] S. Budkowski and P. Dembinski, “An Introduction to
Estelle: A Specification Language for Distributed
Systems,”Computer Networks and ISDN Systems,
vol. 14, no. 1, pp. 3–23, 1987.

[12] D. Cabanis and S. Medhat,
“Classification-Orientation for VHDL: A
Specification,”Proceedings of VHDL International
Users Forum Spring ’96 Conference, Santa Clara,
CA, pp. 265–274, 1996.

[13] H. Ehrig and B. Mahr,Fundamentals of Algebraic
Specification 1: Equations and Initial Semantics,
vol. 6. New York, NY: Springer-Verlag, 1985.

[14] R. Ernst, J. Henkel, and T. Benner,
“Hardware-Software Co-synthesis for
Microcontrollers,” IEEE Design and Test of
Computers, vol. 10, no. 4, pp. 64–75, 1993.

[15] A. S. Evans, “Specifying and Verifying Concurrent
Systems Using Z,” Proceedings of FME ’94:
Industrial Benefit of Formal Methods, pp. 366–380,
1994.

[16] O. Færgemand and A. Olsen, “Introduction to
SDL-92,” Computer Networks and ISDN Systems,
vol. 26, , pp. 1143–1167, 1994.

[17] M. Fowler and K. Scott,UML Distilled. Reading,
MA: Addison-Wesley, 1997.

[18] J. Gong, D. D. Gajski, and S. Bakshi, “Model
Refinement for Hardware-Software Codesign,”
ACM Tansactions on Design Automation of
Electronic Systems, vol. 2, no. 1, pp. 22–41, 1997.

[19] R. Gupta and G. de Micheli, “System Co-synthesis
for Digital Systems,” IEEE Design and Test of
Computers, vol. 10, no. 3, pp. 29–41, 1993.

[20] D. Harel, “Statecharts: A Visual Formalism for
Computer Systems,” Science of Computer
Programming, vol. 8, no. 3, pp. 231–274, 1987.

[21] C. A. R. Hoare, “Communicating Sequential
Processes,”Communications of the ACM, vol. 21,
no. 11, pp. 934–941, 1978.

[22] C. A. R. Hoare, Communicating Sequential
Processes. London: Prentice Hall, 1985.

[23] Y. V. Hoskote, J. A. Abraham, D. S. Fussell, and J.
Moondanos, “Automatic Verification of
Implementations of Large Circuits Against HDL
Specifications,” IEEE Transactions on CAD of
Integrated Circuits and Systems, vol. 16, no. 3, pp.
217–228, 1997.

[24] ICL, VHDL+: Extensions to VHDL for System
Specification, Version 2.0. ICL, Language
Reference Manual, 1997.

[25] IEEE, Standard VHDL Language Reference
Manual. Standard 1076-1993, New York, NY: IEEE,
1993.

[26] IEEE, Standard Verilog Hardware Description
Language Reference Manual. Standard 1364-1995,
New York, NY: IEEE, 1995.

[27] INMOS Ltd., OCCAM Programming Manual.
London, UK: Prentice-Hall, 1984.

[28] International Standards Organization,Information
processing systems—open systems interconnection.
{LOTOS}: a formal descriptiontechnique based on
the temporal ordering of observational behaviour.
International Standard 8807, 1988.

[29] ISO, Estelle: A Formal Description Technique Based
on an Extended State Transition Model. Draft
International Standard 9074, 1987.

[30] ISO/IEC, Ada 95 Reference Manual. International
Standard ISO/IEC 8652:1995 (E), Berlin, Germany:
Springer-Verlag, 1995.

[31] ITU, Specification and Description Language
(SDL). Revised Recommendation Z.100, 1992.

[32] Y.-L. Lin, “Recent Developments in High-Level
Synthesis,”ACM Tansactions on Design Automation
of Electronic Systems, vol. 2, no. 1, pp. 2–21, 1997.

[33] M. C. McFarland, “Formal Verification of Sequential
Hardware: A Tutorial,”IEEE Transactions on CAD
of Integrated Circuits and Systems, vol. 12, no. 5, pp.
633–654, 1993.

[34] M. Radetzki, W. Putzke, W. Nebel, S. Maginot, J.-M.
Bergé, and A.-M. Tagant, “VHDL Language
Extensions to Support Abstraction and Re-Use,”
Proceedings of Workshop on Libraries, Component
Modeling, and Quality Assurance, Toledo, Spain,
1997.

[35] Rational Software Corporation,UML Resource
Center. Rational Software Corporation,
http://www.rational.com/uml/, 1997.

[36] J. M. Spivey,The Z Notation: A Reference Manual,
2nd ed. New York, NY: Prentice-Hall, 1992.

[37] S. Swamy, A. Molin, and B. Covnot, “OO-VHDL:
Object-Oriented Extensions toVHDL,” IEEE
Computer, vol. 28, no. 10, pp. 18–26, 1995.

[38] D. E. Thomas, J. K. Adams, and H. Schmit, “A
Model and Methodology for Hardware-Software
Codesign,”IEEE Design and Test of Computers, vol.
10, no. 3, pp. 6–15, 1993.

[39] D. E. Thomas and P. R. Moorby,The Verilog
Hardware Description Language, Third ed. Boston,
MA: Kluwer Academic Publishers, 1996.

