
This work has been accepted for publication in the Proceedings of VIUF Fall ’97 Conference. Copyright may
be transferred without notice, after which this version will be superseded and may no longer be accessible.

1

Reuse Through Genericity in SUAVE

Peter J. Ashenden
Dept. Computer Science

The University of Adelaide, SA 5005
Australia

petera@cs.adelaide.edu.au

Philip A. Wilsey and Dale E. Martin
Dept. ECECS, PO Box 210030

University of Cincinnati
Cincinnati, OH 45221- 0030,USA

phil.wilsey@uc.edu, dmartin@ececs.uc.edu

Abstract

VHDL currently has a limited form of genericity in which
component and entity declarations can be parameterized
with formal generic constants. SUAVE extends the gener-
icity mechanism by allowing formal generics types and by
allowing generics to be specified in the interfaces of sub-
programs and packages. The approach is based on the fea-
tures of Ada-95. It allows units to be re-used in a much
wider variety of contexts without modifying the original
code. In this paper, we show that the genericity added by
SUAVE enhances reuse across the spectrum of modeling,
from high-level to gate level. In particular, the genericity
extensions interact with the SUAVE extensions for object-
oriented data modeling to significantly improve support for
high-level behavioral modeling and for developing test-
benches. We show that the genericity extensions integrate
seamlessly with the existing language. Furthermore, the
implementation burden is not large, and, since generic in-
stantiation is performed at elaboration time, there is no
performance penalty in simulation or synthesis.

1. Introduction

One important objective of object-oriented extensions to
VHDL is to improve support for re-use of models through
the mechanism of inheritance. However, focussing on this
approach ignores the important, orthogonal mechanism of
genericity, which supports re-use in a much wider variety
of contexts. SUAVE extends VHDL by adding both object-
oriented and genericity features. The object-oriented ex-
tensions are described in a companion paper [3]; this paper
describes the genericity extensions.

VHDL currently has a limited form of genericity in
component and entity declarations. A component or entity
can have formal generic constants, with actual constant
values being supplied at elaboration time when the unit is
instantiated. Generic constants are typically used in two
ways. First, they are used to constrain the index bounds of
array ports of a unit. This allows the unit to be re-used in
contexts where the bounds of actual signals associated with
the ports vary. Second, they are used to specify timing and
operational parameters of a unit. This allows the unit to be
re-used in contexts where the timing or operational require-
ments vary.

SUAVE extends the genericity mechanism of VHDL by
allowing types to specified as formal generics and by al-
lowing generics to be specified in the interfaces of subpro-
grams and packages. The approach is based on the features
of Ada-95. Use of formal type generics allows units to be
reused in contexts where data of different types is to be ma-
nipulated. For example, a multiplexer can be specified
with a formal type generic for the type of the input and out-
put data. This allows the multiplexer model to be reused
as a bit, bit_vector, std_logic, std_logic_vector, integer, or
user-defined-type multiplexer, without modifying the orig-
inal model code. Use of generics in the interfaces of sub-
programs and packages allows definition of container
abstract data types that can be reused to contain data of dif-
ferent types. For example, a generic package can be de-
fined to represent and manipulate sequences of integer,
time values, or test vectors for different devices under test,
again without modifying the original package code.

This paper outlines the SUAVE extensions for generic-
ity and illustrates their use through some examples. A more
complete description can be found in the SUAVE report
[4]. Most of the features added to VHDL are adapted from
features in Ada-95 [7], and are included largely for the
same reasons that they are included in Ada-95 [5]. We

* This work was partially supported by Wright Laboratory under USAF contract F33615- 95- C- 1638.

2

show that the genericity added by SUAVE enhances reuse
across the spectrum of modeling, from high-level to gate
level. In particular, the genericity extensions interact with
the SUAVE extensions for object-oriented data modeling
to significantly improve support for high-level behavioral
modeling and for developing test-benches. We show that
the genericity extensions integrate seamlessly with the ex-
isting language. Furthermore, the implementation burden
is not large, and, since generic instantiation is performed at
elaboration time, there is no performance penalty in simu-
lation or synthesis.

Section 2 of this paper presents the design objectives
that motivated the extensions for genericity in SUAVE.
Section 3 is an overview of the existing genericity mecha-
nism in VHDL, with which the SUAVE extensions inte-
grate. Section 4 describes the SUAVE type genericity
extensions, and Section 5 illustrates them with a number of
examples. Section 6 describes and illustrates further exten-
sions for subprogram and package genericity. Our conclu-
sions are presented in Section 7.

2. SUAVE Design Objectives

A previous paper [2] reviews the issues to be addressed in
extending VHDL for high-level modeling and discusses
principles that should govern the design of language exten-
sions. As a result of that analysis, a number of design ob-
jectives were formulated for SUAVE. Among them, the
following motivated our approach to incorporating gener-
icity features into VHDL:

Sto improve support for re-use and incremental develop-
ment by allowing further delaying of bindings through
type-genericity and dynamic polymorphism,

Sto preserve capabilities for synthesis and other forms of
design analysis,

Sto support hardware/software co-design through im-
proved integration with programming languages (e.g.,
Ada),

Sto preserve correctness of existing models within the ex-
tended language.

Since SUAVE is an extension of the existing VHDL lan-
guage, it is important that the extensions integrate well
with all aspects of the existing language, to preserve what
Brooks refers to as the “conceptual integrity” of the lan-
guage [6]. In particular, the extensions for genericity must
integrate well with the existing mechanism for generics in
VHDL.

3. Overview of Existing Generics

VHDL currently allows an entity declaration, a component
declaration or a block statement to include a generic
clause, which defines formal generic constants for the unit.
Generic constants are typically used to specify timing and
other operational parameters and to specify index bounds
for array ports. These uses are illustrated by the following
entity declaration for a multiplexer:

entity mux is
generic (Tpd : time;

width : positive;
trace : boolean := false);

port (sel : in bit;
d0, d1 : in bit_vector(0 to width - 1);
d_out : out bit_vector(0 to width - 1));

end entity mux;

The generic constant Tpd is used to parameterize the multi-
plexer with respect to propagation-delay; width is used in
the index constraints for the data ports; and trace is used to
control whether the multiplexer traces values passed to the
output. The generic constants are visible in any architec-
ture corresponding to this entity, and can be used in the im-
plementation of the structure or behavior of the design
entity. Note that the generics are in fact constant objects,
since that class is the default for interface objects in a ge-
neric clause. Thus, the generic clause could be rewritten
stating the class explicitly:

generic (constant Tpd : time; . . .);

Note also that the generic constant trace has a default value
that is used if no actual value is supplied when the entity is
instantiated.

When a unit with a generic clause is instantiated, a ge-
neric map aspect is used to associate actual values with the
formal generic constants. For example, the entity shown
above might be instantiated as follows:

data_mux : entity work.mux(behavioral)
generic map (Tpd => 1.6 ns,

width => 16, trace => true)
port map (. . .);

The actuals are constants whose values are used in place of
the formal generic constants for this instance. Association
of actuals with formal generics occurs when the instance is
elaborated prior to simulation or synthesis.

4. Extension of Generics

One of the main aspects that constrains re-use of the multi-
plexer entity described in Section 3 is that it can only be in-
stantiated to deal with bit-vector values. A more re-usable
multiplexer entity would be instantiable for arbitrary types.
Thus, it is desirable to be able to specify the data type as a

3

formal generic. In many cases, this is feasible, since the
implementation of a unit does not depend on the details of
any particular type. For example, a behavioral imple-
mentation of a multiplexer simply involves assigning val-
ues from input to output, irrespective of the type of the
values. A given multiplexer instance, however, should
only be allowed to deal with values of one particular type,
namely the type of the signals connected to its data ports.
This restriction is in conformance with the strong-typing
philosophy of VHDL.

SUAVE extends the generic clause feature of VHDL by
allowing specification of formal generic types. A unit may
use a formal type to define ports and other objects in its im-
plementation. When the unit is instantiated, an actual type
is associated with the formal type for that instance. The as-
sociation occurs when the instance is elaborated.

The particular mechanism for specifying formal types
is modeled on the corresponding mechanism in Ada-95 [7],
but is adapted to integrate cleanly with the existing generic
mechanism in VHDL. A formal generic type is specified
in the following form in a generic clause:

type identifier is interface_type_definition
For example, the multiplexer entity in Section 3 might be
revised as follows to include a formal generic type for the
data to be handled. (The propagation delay and tracing ge-
neric constants are omitted for clarity of illustration.)

entity mux is
generic (type data_type is private);
port (sel : in bit;

d0, d1 : in data_type; d_out : out data_type);
end entity mux;

Formal type Restrictions on actual type

private actual can be any type that allows as-
signment

new type_mark actual must be derived from the specific
type (see Ashenden, 1997, #94)

new type_mark
with private

actual must be derived from the specific
tagged type (see Ashenden, 1997, #94)

(<>) actual must be a discrete type

range <> actual must be an integer type

units <> actual must be a physical type

range <>.<> actual must be a floating-point type

array (index_type)
of element_type

actual must be an array type with the
specified index and element types

access subtype actual must be an access type with the
specified designated type

file of type_mark actual must be a file type with the speci-
fied element type

Table 1. Classes of formal generic types in
SUAVE.

SUAVE allows a number of different classes of type def-
inition, each restricting the actual type that can be associat-
ed when the unit is instantiated, as shown in Table 1.
(Further refinements to the first three classes are described
in the SUAVE report [4].) The implementation of a unit can
make use of the knowledge about the formal type afforded
by the definition. For example, it may use arithmetic op-
erations on a formal integer type, or indexing on a formal
array type. Section 5 includes further examples of use of
formal types.

The actual value to be associated with a formal type is
specified as a type name in the generic map aspect. For ex-
ample, the generic multiplexer described above might be
instantiated for integer data types as follows:

int_mux : entity work.mux(behavioral)
generic map (data_type => integer)
port map (. . .);

SUAVE further extends VHDL by allowing package
declarations and subprogram specifications to include ge-
neric clauses, enabling definition of template packages and
subprograms that can be re-used with different type bind-
ings. This feature combines with the object-oriented ex-
tensions in SUAVE [3] to provide means of defining
generic abstract data types in a type-secure way.

A generic package includes a generic clause before the
declarations in the package, for example:

package float_ops is
generic (type float_type is range <>.<>);
. . .

end package float_ops;

A generic package such as this cannot be used directly.
Instead, it must be instantiated and actual generics associ-
ated with the formal generics, for example:

type amplitude is range - 10.0 to +10.0;
package amplitude_ops is new float_ops

generic map (float_type => amplitude);

Note that the instance is a package declared within an en-
closing declarative region. SUAVE generalizes the use of
packages by allowing them to be declared in inner regions,
rather than just as library units. This generalization is also
related to the use of packages in the object-oriented exten-
sions, and is discussed further in that context [3].

A generic subprogram includes a generic clause before
the parameter list, analogous to the way in which an entity
includes the generic clause before the port list, for exam-
ple:

procedure swap
generic (type data_type is private)
(a, b : inout data_type) is
variable temp : data_type;

begin
temp := a; a := b; b := temp;

end procedure swap;

4

A generic subprogram cannot be called directly, but must
be instantiated first, for example:

procedure swap_times is new swap
generic map (data_type => time);

This declares a procedure with two parameters of type time.
A call to the procedure includes a normal actual parameter
list, for example:

swap (old_time, new_time);

5. Examples Using Generic Types

5.1 Generic Multiplexer

An entity declaration for a generic multiplexer is shown in
Section 4. A corresponding architecture body is:

architecture data_flow of mux is
begin

with sel select
d_out <= d0 when ’0’,

d1 when ’1’;
end architecture data_flow;

This illustrates that the implementation is independent of
the details of the data type. It simply uses the value of the
select input to choose which of the two inputs to assign to
the output.

5.2 Generic Queue ADT Package

One common use of generic packages in Ada is to define
re-usable abstract data types (ADTs) for container struc-
tures, such as list, queues and sets. SUAVE enables such
ADTs to be defined in VHDL. As an example, the follow-
ing generic package declaration defines an ADT interface
for queues of homogeneous elements:

package queues is
generic (type element_type is private);
type queue is access private;
impure function new_queue return queue;
impure function is_empty (Q : in queue)

return boolean;
procedure append (Q : inout queue;

E : in element_type);
procedure extract_head (Q : inout queue;

E : out element_type);
private

type element_node;
type element_ptr is access element_node;
type element_node is record

next_element : element_ptr;
value : element_type;

end record element_node;

type queue is record
head, tail : element_ptr;

end record queue;
end package queues;

The type of elements to be included in a queue is repre-
sented by the formal type element_type. The queue type is
a private type [3], whose concrete implementation is a
linked list of nodes, each containing a value of the element
type. The details of the concrete implementation are in the
private part of the package (between the keywords private
and end packge), and are thus not hidden from a package
user. The ADT operations have parameters of the queue
and element types. The queue package might be instan-
tiated and used to deal with queues of test vectors, for ex-
ample, as follows:

type test_vector is . . .;
package test_queues is new queues

generic map (element_type => test_vector);

variable tests_pending : test_queues.queue
:= test_queues.new_queue;

. . .

test_queues.append (tests_pending, generated_test);

5.3 Generic Counter
A counter is a device that increments a value of some dis-
crete type, starting at the smallest value and returning to the
smallest value after reaching the largest value. A generic
counter that deals with any discrete type can be described
as follows. First, the entity declaration is:

entity counter is
generic (type count_type is (<>));
port (clk : in bit; data : out count_type);

end entity counter;

The notation used for the formal generic type specifies that
the actual type must be a discrete type. A behavioral archi-
tecture body corresponding to the entity is:

architecture behavioral of counter is
begin

count_behavior : process is
variable count : count_type := count_type’low;

begin
data <= count;
wait until clk = ’1’;
if count = count_type’high then

count := count_type’succ(count);
else

count := count_type’low;
end if;

end process count_behavior;
end architecture behavioral;

The state of the counter is represented by the variable,
whose type is the formal generic type. Since the type must

5

be discrete, the implementation is free to use the ’low attrib-
ute to initialize the state. Similarly, the process statement
uses the ’succ attribute to increment the count value, and
the ’high attribute to determine when the value has reached
its maximum. Some examples of instantiating this counter
design entity are:

subtype short_natural is natural range 0 to 255;
type state_type is (idle, receiving, processing, replying);
. . .

short_natural_counter : entity work.counter(behavioral)
generic map (count_type => short_natural)
port map (clk => master_clk, data => short_data);

state_counter : entity work.counter(behavioral)
generic map (count_type => state_type)
port map (clk => master_clk, data => state_data);

5.4 Generic Shift Register

A shift register stores and shifts elements of a one-dimen-
sional array. The way in which the shift register operates
is independent of the particular index and element types of
the array. Hence, a generic shift register can be described
as follows. First, the entity declaration is:

entity shift_register is
generic (type index_type is (<>);

type element_type is private;
type vector is

array (index_type range <>)
of element_type);

port (clk : in bit;
data_in : element_type;
data_out : vector);

end entity shift_register

The index type is discrete, and the element type can be
any type that allows assignment. The vector type illustrates
use of preceding formal types in the generic clause to speci-
fy the index and element types of the array. This is a minor
change to VHDL adopted from Ada as part of adopting the
generic mechanisms. A behavioral architecture body for
the shift register is:

architecture behavioral of shift_register is
begin

shift_behavior : process is

constant data_low : index_type
:= data_out’low;

constant data_high : index_type
:= data_out’high;

type ascending_vector is
array (data_low to data_high)
of element_type;

variable stored_data : ascending_vector;

begin
data_out <= stored_data;
wait until clk = ’1’;
stored_data(data_low

to index_type’pred(data_high))
:= stored_data(index_type’succ(data_low)

to data_high);
stored_data(data_high) := data_in;

end process shift_behavior;
end architecture behavioral;

The state of the shift register is represented by the variable
stored_data, whose type is an array of the same size and
element type as the formal array type. The behavior in the
process statement is expressed using only the knowledge
that the index type is discrete, that the stored data can be
indexed, and that the data output port can be assigned the
stored array value. An example of instantiation of the shift
register is:

signal master_clk, carry_in : bit;
signal result : bit_vector(15 downto 8);
bit_vector_shifter : entity work.shift_register(behavioral)

generic map (index_type => natural,
element_type => bit,
vector => bit_vector)

port map (clk => master_clk,
data_in => carry_in, data_out => result);

5.5 Mixin Inheritance

In the companion paper [3], we describe the SUAVE fea-
tures for object-oriented inheritance based on derived
tagged types. These features can be combined with formal
generic derived types to provide a form of mixin inheri-
tance [9]. Languages such as C++ use multiple inheritance
for this purpose, but with the SUAVE mechanisms, multi-
ple inheritance is not needed.

To illustrate mixin inheritance, consider description of
an instruction set for a RISC CPU. The basic type of in-
struction, including only an opcode, can be described as:

type instruction is tagged record
opcode : opcode_type;

end record instruction;

This is a tagged record type, and thus can be extended with
additional elements when new types are derived from it.
The derived types inherit the operations applicable to the
parent type and can override inherited operations and de-
fine additional ones.

The basic instruction type might be extended to define
memory reference instructions that use indexed addressing
mode, requiring base and offset register numbers. Rather
than replicating the description of register numbers and op-
erations in each kind of memory reference instruction, the
description is encapsulated so that it can be re-used for any

6

extension derived from the instruction type. The package
declaration encapsulating the description is:

package indexed_addressing_mixin is
generic (type parent_instruction is

new instruction with private);

type indexed_instruction is
new parent_instruction with record

index_base, index_offset : register_number;
end record indexed_instruction;

function effective_address
(instr : indexed_instruction)
return address;

end package indexed_addressing_mixin;

The package has a formal generic type that represents a par-
ent instruction type to be extended. The derived type in-
dexed_instruction extends the parent instruction with base
and index register numbers, and has effective_address as an
applicable operation. To see how this package might be
used, consider descriptions of load and store instruction
types, derived from the basic instruction type:

type load_instruction is
abstract new instruction with record

destination : register_number;
end record load_instruction;

type store_instruction is
abstract new instruction with record

source : register_number;
end record store_instruction;

Indexed versions of each of these instruction types can be
derived through instantiations of the indexed_address-
ing_mixin package:

package indexed_loads is
new indexed_addressing_mixin

generic map (parent_instruction
=> load_instruction);

alias indexed_load_instruction is
indexed_loads.indexed_instruction;

package indexed_stores is
new indexed_addressing_mixin

generic map (parent_instruction
=> store_instruction);

alias indexed_store_instruction is
indexed_stores.indexed_instruction;

6. Formal Subprograms and Packages

In the previous sections, formal generic types were de-
scribed and illustrated. SUAVE also adopts formal generic
subprograms and packages from Ada-95. These features
significantly aid re-use of generic units. Use of formal ge-
neric subprograms is described in this section. Space con-

siderations preclude description of formal generic
packages; they are described in the SUAVE report [4].

A formal generic subprogram is defined by including a
subprogram specification in a generic clause. When the
unit is instantiated, an actual subprogram with the same pa-
rameter and result type profile must be supplied. There are
two idiomatic uses of this feature. The first arises when a
generic unit includes a formal generic type and needs the
instantiator to supply an operation on values of that type.
The second arises when a unit needs the instantiator to sup-
ply an action procedure or a call-back procedure that will
be invoked as part of an operation. Both of these uses are
illustrated by the following package declaration for an or-
dered collection ADT, adapted from Ashenden [1]:

package ordered_collection_adt is
generic (type element_type is private;

type key_type is private;
function key_of (E : element_type)

return key_type;
function “<”(L, R : key_type)

return boolean is <>);

type ordered_collection is limited access private;

function new_ordered_collection
return ordered_collection;

procedure insert (c : inout ordered_collection;
e : in element_type);

procedure traverse
generic (procedure action

(element : in element_type))
(c : in ordered_collection);

private

type ordered_collection_object;
type ordered_collection_ptr is

access ordered_collection_object;
type ordered_collection_object is record

next_element,
prev_element : ordered_collection_ptr;
element : element_type;

end record tree_record;

type ordered_collection is
new ordered_collection_ptr;

end package ordered_collection_adt;

The position of each element in a collection is determined
by its key. Since the package has know knowledge of the
actual element type, the formal generic functions key_of
and “<”are used. An instantiator of this package will sup-
ply actual functions that are appropriate for the actual ele-
ment and key types. The notation “<>” indicates that the
default actual function will be whichever conforming “<”
function is visible at the point of instantiation. The generic
procedure traverse has a formal generic subprogram for the
action to be applied to each element in the collection. The
package body for this ADT is:

7

package body ordered_collection_adt is

function new_ordered_collection
return ordered_collection is

variable result : ordered_collection_ptr
:= new ordered_collection_object;

begin
result.next_element := result;
result.prev_element := result;
return ordered_collection(result);

end function new_ordered_collection;

procedure insert (c : inout ordered_collection;
e : in element_type) is

variable current_element
: ordered_collection _ptr
:= ordered_collection_ptr(c)

.next_element;
variable new_element : ordered_collection_ptr;

begin
while current_element

/= ordered_collection_ptr(c)
and key_of(current_element.element)

< key_of(e) loop
current_element

:= current_element.next_element;
end loop;
- - insert new element before current_element
new_element

:= new ordered_collection_object’(
element => e,
next_element => current_element,
prev_element

=> current_element
.prev_element);

new_element.next_element.prev_element
:= new_element;

new_element.prev_element.next_element
:= new_element;

end procedure insert;

procedure traverse
generic (procedure action

(element : in element_type))
(c : in ordered_collection) is
variable current_element

: ordered_collection _ptr
:= ordered_collection_ptr(c)

.next_element;
begin

while current_element
/= ordered_collection_ptr(c) loop

action (current_element.element);
current_element

:= current_element.next_element;
end loop;

end procedure traverse;

end package body ordered_collection_adt;

The body of the insert procedure simply calls the formal ge-
neric functions to determine the key of an element and the
compare keys. Similarly, the body of the traverse proce-

dure calls its formal generic procedure to invoke the action
on each element.

An illustration of the use of the ADT is also adapted
from Ashenden [1]. Suppose test-bench requires a collec-
tion of stimulus vectors ordered by time of application to
the device under test. The declarations for the stimulus
vectors are:

type stimulus_element is record
application_time : delay_length;
pattern : std_logic_vector

(0 to stimulus_vector_length - 1);
end record stimulus_element;

function stimulus_key (stimulus : stimulus_element)
return delay_length is

begin
return stimulus.application_time;

end function stimulus_key;

The ordered collection ADT package can be instantiated to
deal with simulus vectors:

package ordered_stimulus_collection_adt is
new ordered_collection_adt

generic map (element_type
=> stimulus_element,

key_type => delay_length,
key_of => stimulus_key,
“<”=> std.standard.“<”);

The traverse procedure can be instantiated to apply each
stimulus vector to the device under test:

use ordered_stimulus_collection_adt.all;
variable dut_stimuli : ordered_collection

:= new_ordered_collection;
signal dut_inputs : std_logic_vector

(0 to stimulus_vector_length - 1);
procedure apply_stimulus

(stimulus : stimulus_element) is
begin

dut_inputs <= stimulus.pattern;
wait for 100 ns;

end procedure apply_stimulus;
procedure apply_all_stimuli is new traverse

generic map (action => apply_stimulus);
. . .
apply_all_stimuli (dut_stimuli);

7. Conclusion
In this paper we have described the SUAVE extensions to
VHDL to improve its support for re-use through genericity.
These features combine with SUAVE’s extensions for ob-
ject-oriented modeling [3] to significantly improve the ex-
pressiveness of VHDL at all levels of modeling
abstraction. The genericity features described here are
drawn from Ada-95 and are adapted to integrate with
VHDL’s existing genericity mechanism. Drawing on Ada

8

is appropriate, since VHDL was originally strongly in-
fluenced by Ada.

Space considerations preclude a more detailed defini-
tion of the features added in SUAVE. The interested reader
can find a more complete description in the SUAVE report
[4]. Work is now in progress to implement the extensions
within the framework of the SAVANT project [8].

References
[1] P. J. Ashenden, The Designer’s Guide to VHDL. San

Francisco, CA: Morgan Kaufmann, 1996.
[2] P. J. Ashenden and P. A. Wilsey, Principles for Lan-

guage Extension to VHDL to Support High-Level
Modeling, Dept. Computer Science, University of
Adelaide, Technical Report TR-03/97, ftp://ftp.cs.
adelaide.edu.au/pub/VHDL/TR-principles.ps, 1997.

[3] P. J. Ashenden and P. A. Wilsey, “SUAVE: Painless
Extension for an Object-Oriented VHDL,”Proceed-
ings of VHDL International Users Forum Fall 1997
Conference, Washington, DC, 1997.

[4] P. J. Ashenden, P. A. Wilsey, and D. E. Martin,
SUAVE Proposal for Extensions to VHDL for High-
Level Modeling, Dept. Computer Science, Universi-
ty of Adelaide, Technical Report to be published,
ftp://ftp.cs.adelaide.edu.au/pub/VHDL/TR-
extension.ps, 1997.

[5] J. Barnes, Ed. Ada 95 Rationale, vol. 1247. Berlin,
Germany: Springer-Verlag, 1997.

[6] F. P. Brooks, Jr., The Mythical Man-Month, Anniver-
sary ed. Reading, MA: Addison-Wesley, 1995.

[7] ISO/IEC, Ada 95 Reference Manual. International
Standard ISO/IEC 8652:1995 (E), Berlin, Germany:
Springer-Verlag, 1995.

[8] MTL Systems Inc., Standard Analyzer of VHDL Ap-
plications for Next-generation Technology (SA-
VANT). MTL Systems, Inc, http://www.mtl.com/
projects/savant/, 1996.

[9] A. Taivalsaari, “Onthe Notion of Inheritance,”ACM
Computing Surveys, vol. 28, no. 3, pp. 438- 479,
1996.

