
Accepted for publication in Proceedings of Sixth International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS ’98).

© 1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

1

Extensions to VHDL for
Abstraction of Concurrency and Communication*

Peter J. Ashenden

Dept. Computer Science
University of Adelaide, SA 5005

Australia

petera@cs.adelaide.edu.au

Philip A. Wilsey

Dept. ECECS, PO Box 210030
University of Cincinnati

Cincinnati, OH 45221-0030, USA

phil.wilsey@uc.edu

Abstract

This paper describes extensions to VHDL to support sys-
tem-level behavioral modeling by providing more abstract
forms of communication and concurrency than those cur-
rently in the language. The report summarizes design ob-
jectives and issues that must be considered in developing
such extensions, and presents definitions of our extensions.
The extensions for communication consist of channel types,
channel objects, dynamically allocated channels, and mes-
sage passing statements. The extensions for concurrency
consist of process declarations and static and dynamic pro-
cess instantiation statements. Use of the extensions is illus-
trated with examples.

1. Introduction

As the complexity of integrated hardware and software sys-
tems increases, system-level design languages are becom-
ing increasingly important. Such languages rely on
abstraction as the key to managing complexity. Designers
focus first on the abstract properties of a system in various
domains and devise a systems architecture that will satisfy
the requirements placed on the system. The domains under
consideration include behavior, structure, performance,
physical arrangement and packaging, power consumption,
thermal, cost, and so on. In each domain, abstraction is
used to focus on the major aspects of the system and minor
detail is ignored. Judicious choice of abstractions makes
architectural design and analysis tractable, and aids subse-
quent partitioning and refinement of the system design.

Hardware description languages focus on describing
systems in the behavioral and structural domains. How-
ever, due to their origin as languages for hardware design,
they frequently do not include strong capabilities for ab-
stracting over data and for describing complex interactions.
For example, in Verilog [14, 18], data types are closely
bound to their binary representation, and signalling be-
tween modules includes aspects of electrical implementa-
tion. VHDL [1, 13], on the other hand, allows more
abstract expression of data, and its type system is similar to
that of conventional programming languages. However, its
signalling features are still closely bound to electrical im-
plementation.

To remedy these deficiencies, we have developed exten-
sions to VHDL to improve its support for system-level mo-
deling. These extensions are based on the requirement in
a system-level description language for abstraction in the
following areas:

abstraction of data,

abstraction of concurrency, and

abstraction of communication and timing.

These extensions make VHDL suitable for describing at
an abstract level aspects of a system that may ultimately be
implemented in hardware or software. We have described
the details of the extensions to the data modeling facilities
in previous papers [4–6]. These extensions involve mecha-
nisms for object-oriented data types and for genericity. We
have also presented a discussion of the issues that must be
considered in extending VHDL to provide more abstract
forms of concurrency and communication [3].

* This work was partially supported by Wright Laboratory under USAF contract F33615-95-C-1638.

2

In this paper we present our extensions for abstraction
of communication and concurrency in the SAUVE (SAV-
ANT and University of Adelaide VHDL Extensions) pro-
ject. We introduce into VHDL the notions of
communication channels and message-passing operations
as an abstraction of communication by signals. We also ex-
tend the process model by allowing process declarations
that can be statically or dynamically instantiated.

Section 2 of this paper reviews our design objectives.
Section 3 discusses issues that must be considered in ex-
tending VHDL with a more abstract form of communica-
tion and gives reasons for our choices among the
alternaitves. Section 4 presents the details of the abstract
communication language features in SUAVE and Section
5 presents the details of the extensions for concurrency ab-
straction. Section 6 presents an extended example, a multi-
threaded client-server system, that illustrates the combined
use of the extensions in a system-level model. Finally, Sec-
tion 7 contains our conclusions.

2. Design Objectives

Our main design objective in the SUAVE project is to im-
prove high-level modeling support in VHDL through in-
creased use of abstraction. Specific objectives leading to
the extensions described in this paper are:

to provide a more abstract form of communication than
the existing mechanisms of signals and signal assign-
ment,

to provide dynamic process creation and termination,

to provide abstractions that are not biased towards hard-
ware or software implementations, allowing subsequent
partitioning and refinement (hardware/software co-de-
sign),

to preserve capabilities for synthesis and other forms of
design analysis,

to ensure clean integration and well-defined interaction
with existing language mechanisms,

to ensure clean integration and well-defined interaction
with extensions for data modeling and genericity devel-
oped in the SUAVE Project, and

to preserve correctness of existing models within the ex-
tended language.

We consider integration with the existing language to be
a key design objective. We are guided by Fred Brooks’ no-
tion of “conceptual integrity” [8]. As Brooks notes, “Con-
ceptual integrity does require that a system reflect a single
philosophy and that the specification as seen by the user
flow from a few minds.” To this end, we have embraced the
design principles (listed in our earlier paper [5]) used dur-
ing earlier development and standardization ofVHDL.

3. Considerations for the Abstraction of
Communication

At the system level of design, processes representing active
objectsmust interact to communicate data and to synchron-
ize their operation. The simplest form of interaction is
message passing, involving the transfer of data from a sen-
der process to a receiver process. The act of message pass-
ing can also be used to synchronize processes. SUAVE
extends VHDL with message passing for abstract com-
munication as it is a natural abstraction of communication
common to both software and hardware. Other forms of
interaction, such as rendezvous and remote procedure call
are possible [7], but are oriented specifically toward soft-
ware implementation. Fortunately, they are easily ex-
pressed in terms of message passing.

There are two ways that message passing abstracts away
the details of communication in hardware description lan-
guages. First, communication events are not tied to spe-
cific times, but rather are simply ordered by relative time
of sending. This causality-based ordering is weaker and
less constraining than clock-time ordering, and is therefore
more appropriate at the early stages of design. Second,
communication events may be queued (either by queuing
messages or processes), rather than relying on the recipient
sensing data at the correct time. This allows multiple com-
munication events to form a stream or a transaction without
the need for detailed signalling protocols.

Signals in VHDL can be viewed as statically instan-
tiated, named communication channels. However, the se-
manticsof passing valuesvia signals is based on a low-level
model of electrical implementation, and is significantly
different from the forms of message passing seen in other
system-level description languages such as Estelle [9, 15],
SDL [10, 16] and CSP [11, 12]. At best, VHDL signal as-
signment might be viewed as asynchronous unbuffered
message passing, leading to loss of messages if the receiver
is not ready to accept them.

In a previous paper [3], we identify a number of issues
to consider when designing message-passing communica-
tion mechanism inVHDL and discuss some of thealterna-
tives. The issues are:

1. whether the message send operation should name a
target process as the recipient, or a communication
channel as the transmission medium;

2. whether message passing should be asynchronous or
synchronous;

3. whether to allow multicasting of messages; and

4. how message passing integrates with concrete signal
assignment.

Our choices among the alternatives are as follows.
For the first issue, given that a description may be re-

fined to a hardware implementation in which communica-

3

tion occurs via named signals, named communication
channels are most appropriate. Channels are a more natural
abstraction of the communication mechanism used in hard-
ware description. Furthermore, they allow a communicat-
ing process to be encapsulated with formal channels. Such
a process can then be instantiated several times, each in-
stance communicating with different partner processes.

For the second issue, SUAVE chooses asynchronous
message passing. While either form of can be used to im-
plement the other, asynchronous message passing is the
most flexible. Synchronous communication can be simply
expressed using handshaking. The details can be encapsu-
lated to provide the appearance of simple synchronous
message passing, rendezvous, or remote procedure call.
Implementing asynchronous communication with syn-
chronous primitives, on the other hand, requires explicit in-
stantiation of a message buffer. An additional
consideration addresses correctness proofs for communi-
cating programs. While formal proof techniques for syn-
chronous communication may be simpler, techniques for
proving properties of asynchronous communication have
been developed [17].

For the third issue, SUAVE allows multiple processes to
receive from a channel, thus implementing a form of multi-
cast communication. Each receiver accepts a copy of the
message when it is ready. The sender proceeds as soon as
it has sent the message. This parallels hardware communi-
cation, in which a signal from one source can be connected
to several receivers.

For the fourth issue, the previous paper identified two al-
ternatives: (i) generalizing signals and signal assignment to
a more abstract form, and (ii) adding channels as a new lan-
guage construct. While the former alternative is possible,
in practice it is difficult to define. To do so involves adding
numerous special-case rules to the semantic definitions of
signal declarations, interface signals, signal assignment
statements and wait statements. Adding channels is easier
to define, and, since the semantics are sufficiently different
from signals, easier to comprehend. Hence, SUAVE fol-
lows the latter approach.

4. Channels and Communication in SUAVE
4.1 Channels

Abstract communication in SUAVE occurs over channels,
which are of declared channel types. Channels can be de-
clared objects or interface objects. The syntax rule for a
channel type definition is:

channel_type_definition ::=
channel of subtype_indication
| null channel

In the first form of channel type definition, the subtype
indication is called the message type of the channel. It de-

notes the subtype of values that may be passed as messages
on a channel of the channel type. The second form of chan-
nel type definition defines a null channel type. Such a
channel type is used for a channel on which the messages
have no data content.

One or more channels may be declared using a channel
declaration. The syntax rule is:

channel_declaration ::=
channel identifier_list : subtype_indication ;

Channel declarations may appear within entity declara-
tions, architecture bodies, block statements, generate state-
ments, and package declarations. The subtype indication
in the channel declaration denotes a channel type.

A channel is analogous to a signal, except that informa-
tion is transferred using the send and receive message pass-
ing operations (described below). There is no notion of
resolution of multiple source values, nor of specific times
at which values occur on channels. A channel object de-
notes a queue of messages. When the channel object is
created, the queue is initially empty.

Example

The following declarations define three channel types
and two channel objects:

type request_channel is channel of request_message;
type result_channel is channel of result_message;

type acknowledgment_channel is null channel;

channel request : request_channel;
channel result : result_channel;

——

SUAVE also allowsinterface channels, which may appear
as formal ports of design entities, components or blocks, or
as formal channel parameters of subprograms. The syntax
rule is:

interface_channel_declaration ::=
channel identifier_list : [mode] subtype_indication

The mode, if present, is one ofin or out, and the subtype
indication denotes a channel type. Anin mode channel
may be used to receive messages, and anout mode channel
may be used to send messages.

Example

In the following architecture body, theimage_channel

type represents tokens in an uninterpreted queuing model.
The componentimage_filter has channel ports for receiving
and sending tokens. The component instancefilter has its
ports associated with the actual channel objectsraw_image

andfiltered_image.

architecture performance_modeling of motion_detector is

type image_channel is channel of image_token;

4

component image_filter is
port (channel raw_image : in image_channel;

channel filtered_image : out image_channel);
end component image_filter;

channel raw_image, filtered_image : image_channel;
. . .

begin

filter : component image_filter
port map (raw_image => raw_image,

filtered_image => filtered_image);
. . .

end architecture performance_modeling;

——

4.2 Communication Statements

SUAVE extends the set of sequential statements to include
send statements, receive statements andselect statements.
A send statement adds a message to the queue of a channel.
The syntax rule is:

send_statement ::=
[label :] send [expression] to channel_name ;

The expression is disallowed if the channel is of a null
channel type. Otherwise, the expression is required and de-
notes the value to be sent as a message. If the channel is of
a null channel type, a data-less message is sent. Execution
of a send statement involves adding the message to the tail
of the message queue of the named channel. The process
executing the send statement then continues executing. If
multiple processes execute send statements to the same
channel concurrently, the order in which the messages are
added to the message queue is not defined. (It is imple-
mentation dependent.)

Example

The following two statements send (a) to a channel with
data and (b) to a null channel:

send result_message’(. . .) to result;

send to acknowledgment;

——

A process accepts a message from a channel using areceive
statement. The syntax rule is:

receive_statement ::=
[label :] receive [target] from channel_name ;

The target is disallowed if the channel is of a null channel
type, otherwise it is required. The target must denote a va-
riable name or an aggregate of variable names. Execution
of a receive statement involves examining the message
queue of the named channel. If the message queue is
empty, the process suspends until a message arrives. When
there is a message available, it is removed from the queue.

If the channel is not of a null channel type, the value of the
message is assigned to the target using the same rules as va-
riable assignment.

If multiple processes can read a message channel, all
processes receive each message sent to the channel. Fur-
thermore, all processes receive the messages from the
channel in the same order. An implementation may
achieve this effect either by providing one message queue
for the channel, from which each process copies message
values, or by replicating the message queue at each process.

Example

The following two statements receive (a) from a channel
with data and (b) from a null channel:

receive next_request from request;

receive from acknowledgment;

——

Aprocess may choose between a number of channels for
message reception using aselect statement. The syntax
rules are:

select_statement ::=
[select_label :]

select
[guard] receive_alternative

{ or
[guard] receive_alternative }

| else
sequence_of_statements]

end select [select_label] ;

guard ::= when condition =>

receive_alternative ::=
receive_statement [sequence_of_statements]

A select statement allows non-deterministic choice be-
tween alternative sources for message reception. Each re-
ceive alternative may be guarded by a boolean condition;
a guarded alternative may only be chosen if the guard is
true.

Execution of the select statement consists firstly of ev-
aluating the guard conditions. An alternative is said to be
open if it has no guard, or if its guard evaluates to true. If
no alternative is open and the select statement has anelse
clause, the statements in theelse clause are executed, thus
completing execution of the select statement. It is an error
if no alternative is open and there is noelse clause.

If there are open alternatives for which the channels
named in the corresponding receive statements have
queued messages, one of the open alternatives is chosen ar-
bitrarily. The receive statement is executed, followed by
execution of the sequence of statements (if present), com-
pleting execution of the select statement.

If there are open alternatives but none of the channels
named in the corresponding receive statements have

5

queued messages, execution depends on whether the select
statement has an else clause. If there is an else clause, the
statements in it are executed, completing execution of the
select statement. Otherwise, the process blocks until a
message arrives on one of the channels named in the receive
statements of the open alternatives. Execution then pro-
ceeds as described in the previous paragraph. The guard
conditions are not re-evaluated while the process is blocked
or when a message arrives.

Example

In the following example, the process access_controller

arbitrates between readers and writers of a shared resource.
A reader sends a read-request message to the process, and
only proceeds when the process responds with an acknow-
ledgment. When the reader finishes reading, it sends a
read-finished message to the process. Writers obey a simi-
lar protocol. Multiple readers are allowed concurrent ac-
cess, provided the number of active writers is zero. Only
one writer at a time is permitted, and then only if there are
no active readers. The guards in the select statement con-
trol the reception of request messages, based on the number
of readers or writers currently active.

type read_request_channel is channel of . . . ;
type read_finished_channel is null channel;
type write_request_channel is channel of . . . ;
type write_finished_channel is null channel;
. . .

channel read_request : read_request_channel;
channel read_finished : read_finished_channel;
channel write_request : write_request_channel;
channel write_finished : write_finished_channel;
. . .

access_controller : process is
variable number_of_readers, number_of_writers : natural := 0;

begin
select

when number_of_writers = 0 =>
receive read_request_info from read_request;
number_of_readers := number_of_readers + 1;
. . . – – acknowledge read request

or
receive from read_finished;
number_of_readers := number_of_readers – 1;

or
when number_of_readers = 0

and number_of_writers = 0 =>
receive write_request_info from write_request;
number_of_writers := number_of_writers + 1;
. . . – – acknowledge write request

or
receive from write_finished;
number_of_writers := number_of_writers – 1;

end select;
end process access_controller;

——

4.3 Dynamically Created Channels

SUAVE providesmechanisms based on access types for dy-
namically creating channels in order to communicate with
dynamically created processes. An access types may be
declared to have a channel type as its designated type. Such
an access type is called anaccess-to-channel type. A chan-
nel may be dynamically allocated using an allocator with
a subtype indication denoting a channel type. The access
value returned by the allocator designates the newly allo-
cated channel.

Example

The following declarations defineresult_ref to be an ac-
cess-to-channel type, and the variableresult to be of this
type, initialized with a reference to a dynamically created
channel.

type result_ref is access result_channel;

variable result : result_ref := new result_channel;

——

5. Extensions for Abstraction of Con-
currency

A system-level design language needs to allow expression
of concurrent processes representing the active objects in
a system. In some systems, the number of active objects is
not statically determined, but may vary during operation of
the system. For example, in a client/server system, newser-
vice agents may be created as requests arrive from clients,
allowing multiple requests to be processed concurrently.
In order to describe such systems, a system-level design
language must allow expression of process types that may
be dynamically instantiated and terminated.

The model of concurrency in VHDL is based on pro-
cesses which are statically specified in architecture bodies.
However, the language does not allow specification of a
process type that can be separately instantiated. Instead,
the process must be encapsulated in a design entity and in-
stantiated through the component instantiation mecha-
nism. This is cumbersome, and has the disadvantage of
implying structural partitioning. Furthermore, it does not
allow dynamic instantiation of processes.

These deficiencies can be overcome by extending
VHDL to include process declarations, abstracting over the
statically specified processes currently provided in the lan-
guage. A process interacts with its environment using the
communication mechanism provided by the language.
Therefore, a process declaration includes an interface in
which formal communication objects can be specified. A
process declaration can be statically instantiated as a con-
current statement in an architecture body, with bindings
made between formal and actual communication objects.

6

It can also be dynamically instantiated by the execution of
a sequential process instantiation statement. Process dec-
larations and their instantiation and termination are de-
scribed more fully below.

5.1 Process Declarations

SUAVE extends declarative parts to include process decla-
rations and process bodies as follows:

process_declaration ::=
process_specification
end process [process_simple_name] ;

process_body ::=
process_specification

process_declarative_part
begin

process_statement_part
end process [process_simple_name] ;

process_specification ::=
process identifier is

[generic_clause]
[port_clause]

Process declarations, like subprogram declarations,
may be defined with separate specifications and bodies. In
particular, if a process is declared in a package, the process
specification occurs in the package declaration, and the
process body occurs in the package body.

5.2 Process Instantiation Statements

Static instantiation of a declared process is done using a
process instantiation statement. The syntax rule is:

process_instantiation_statement ::=
[instantiation_label :]

process process_name
[generic_map_aspect]
[port_map_aspect] ;

A process instantiation statement is equivalent to a
block statement with the generic clause and port clause
taken from the process specification and the generic map
aspect and port map aspect taken from the process instan-
tiation statement. The declarative part of the block state-
ment is empty, and the statement part contains a process
whose declarative part and statement part are taken from
the process body. The meaning of any identifier within the
block statement and the process it contains is that asso-
ciated with the identifier in the process declaration or body.
To illustrate application of these rules, consider the follow-
ing process body and instantiation statement:

process p is
generic (g : integer);
port (channel c : c_chan);

variable v : integer;

begin
v := x;

end process p;
. . .

p_inst : process p
generic map (g => 5)
port map (c => c1);

The process instantiation statement is semantically equiva-
lent to:

p_inst : block is
generic (g : integer);
generic map (g => 5);
port (channel c : c_chan);
port map (c => c1);

begin
p : process is

variable v : integer;
begin

v := x;
end process p;

end block p_inst;

The name x is prefixed to ensure that it refers to the same
item visible in the process declration rather than any homo-
graph that hides the name.

Dynamic instantiation of a process is performed using
a sequential process instantiation statement. The syntax
rule is:

sequential_process_instantiation_statement ::=
[label :]

process process_name
[generic_map_aspect]
[port_map_aspect] ;

Execution of a sequential process instantiation state-
ment involves the following steps:

elaboration of the generic list of the process declaration
to create the formal generics, and association of the
actual generics with the formal generics;

elaboration of the port list of the process declaration to
create the formal ports, and association of the actual sig-
nals, channels and values with the formal ports;

elaboration of the declarations of the process; and

creation and initialization of the drivers of the process.

The newly instantiated process then commences execu-
tion of its statement part concurrently with the instantiating
process in the current simulation cycle. The newly instan-
tiated process is said to depend on the instance or activation
of the declaration or statement that immediately contains
the declaration of the process. That instance or activation
may not return or terminate until all of the processes that
depend on it have terminated, since such processes may
refer to items declared by the declaration or statement.

5.3 Process Termination
A process may terminate by executing a sequential state-
ment called a terminate statement. The syntax rule is:

7

terminate_statement ::=
[label :] terminate ;

Termination of a process involves the following actions:

The process waits until all processes that depend on it
have terminated.

The drivers of the process are disconnected from the sig-
nals that they drive.

The formal ports are disassociated from the actual sig-
nals and channels.

6. Example: A Client-Server System

This example is a model of a client-server system in which
the server is multi-threaded, allowing it to serve multiple
transactions concurrently. Since the number of clients to
be served concurrently is not known a priori, the server
creates agents dynamically to perform the transactions.
The organization of the system is illustrated in Figure 1.
The system may ultimately be implemented in software,
but it is desirable to model it early in the design flow before
hardware/software partitioning is performed.

Client

Figure 1. A client-server system
with dynamically created agents.

Client Server

Agent

request

result forwarded
request

dynamically
created

The type result_channel represents a channel for receiving
result messages from the server, and the type result_ref is a
reference to such a channel. The type request_info is the
message type for requests to the server. It includes a refer-
ence to the channel upon which the client expects to receive
the result of the request. The type request_channel represents
a channel for sending requests, and the type request_ref is a
reference to a request channel.

The client process’s port is a channel upon which it
sends requests. Part of the client’s state is a dynamically
created channel for receiving transaction results. When the
client makes a request, it includes the reference to its result
channel as part of the request.

The server process has a channel port for receiving re-
quests, and encapsulates a process declaration for agents,
which also has a channel port for requests. The body of the
server receives a request message on its request channel,

and saves the request in the variableinfo. It then dynami-
cally creates a new request channel and a new agent pro-
cess, with the agent’s request channel port mapped to the
new request channel. The server then forwards the saved
request message via the new channel. The newly created
agent receives the forwarded message, performs the trans-
action, and sends the results to the channel referenced in the
request message. The agent then terminates. While the
agent is processing the transaction, the server may receive
further request messages and create agents to process them
concurrently.

architecture system_level of client_server_system is

type result_value is . . . ;
type result_channel is channel result_value;
type result_ref is access result_channel;

type request_info is record
. . .; – – info for the transaction
result_please : result_ref;

end record request_info;
type request_channel is channel request_info;
type request_ref is access request_channel;

process client is
port (channel request : out request_channel);

variable result : result_ref := new result_channel;

begin
. . .
send (. . ., result) to request;
receive . . . from result.all;
. . .

end process client;

process server is
port (channel request : in request_channel);

process agent is
port (channel request : in request_channel);

variable info : request_info;

begin
receive info from request;
. . .; – – perform transaction
send . . . to info.result_please.all;
terminate;

end process agent;

variable info : request_info;
variable new_agent_request : request_ref;

begin
receive info from request;
new_agent_request := new request_channel;
process agent

port map (new_agent_request.all);
send info to new_agent_request.all;

end process server;

channel server_request : request_info;

begin

the_server : process server
port map (request => server_request);

8

client_pool : for client_index in 1 to 10 generate
a_client : process client

port map (request => server_request);
end generate client_pool;

end architecture system_level;

7. Conclusion

Design at the system level relies on abstraction to manage
complexity. In this paper, we have described extensions to
VHDL that introduce abstract forms of communication and
concurrency. These extensions make the language suitable
for design of behavior and structure at the system level.
Our extensions are not biased towards hardware or software
refinement of a design. Thus, the extended language can
be used to express behavior and structure of a system before
partitioning into hardware and software, supporting ex-
ploration of hardware/software trade-offs and hardware/
software co-design. The approach we have taken is to
provide abstract forms of the existing language mecha-
nisms for communication and concurrency. This eases re-
finement of hardware partitions of a design to lower-level
implementations expressed in VHDL. The abstract forms
of communication and concurrency also ease refinement of
the software partitions to programming-language imple-
mentation.

Whereas this paper provides an overview of the lan-
guage extensions, a more detailed specification can be
found in a separate Technical Report [2]. Subsequent work
in the SUAVE project will involve implementing the exten-
sions in the SAVANT framework [19], and validating the
language design with use cases to be published by the SI2

System Level Design Language (SLDL) Committee.

References

[1] P. J. Ashenden, The Designer’s Guide to VHDL. San
Francisco, CA: Morgan Kaufmann, 1996.

[2] P. J. Ashenden and P. A. Wilsey, Proposed Extensions
to VHDL for Abstraction of Concurrency and Com-
munication, Dept. Computer Science, University of
Adelaide, Technical Report TR-97-11, 1997.

[3] P. J. Ashenden and P. A. Wilsey, “Considerations on
System-Level Behavioural and Structural Modeling
Extensions to VHDL,”Proceedings of VHDL Inter-
national Users Forum Spring 1998 Conference,
Santa Clara, CA, pp. 42–50, 1998.

[4] P. J. Ashenden, P. A. Wilsey, and D. E. Martin,
“Reuse Through Genericity in SUAVE,”Proceed-
ings of VHDL International Users Forum Fall 1997
Conference, Arlington, VA, pp. 170–177, 1997.

[5] P. J. Ashenden, P. A. Wilsey, and D. E. Martin,
SUAVE: A Proposal for Extensions to VHDL for
High-Level Modeling, Dept. Computer Science,
University of Adelaide, Technical Report TR-97-07,
ftp://ftp.cs.adelaide.edu.au/pub/VHDL/TR-exten-
sions.pdf, 1997.

[6] P. J. Ashenden, P. A. Wilsey, and D. E. Martin,
“SUAVE: Painless Extension for an Object-Oriented
VHDL,” Proceedings of VHDL International Users
Forum Fall 1997 Conference, Arlington, VA, pp.
60–67, 1997.

[7] H. E. Bal, J. G. Steiner, and A. S. Tanenbaum, “Pro-
gramming Languages for Distributed Computing
Systems,”ACM Computing Surveys, vol. 21, no. 3,
pp. 261–322, 1989.

[8] F. P. Brooks, Jr.,The Mythical Man-Month, Anniver-
sary ed. Reading, MA: Addison-Wesley, 1995.

[9] S. Budkowski and P. Dembinski, “An Introduction to
Estelle: A Specification Language for Distributed
Systems,”Computer Networks and ISDN Systems,
vol. 14, no. 1, pp. 3–23, 1987.

[10] O. Færgemand and A. Olsen, “Introduction to
SDL-92,” Computer Networks and ISDN Systems,
vol. 26, , pp. 1143–1167, 1994.

[11] C. A. R. Hoare, “Communicating Sequential Pro-
cesses,”Communications of the ACM, vol. 21, no.
11, pp. 934–941, 1978.

[12] C. A. R. Hoare,Communicating Sequential Pro-
cesses. London: Prentice Hall, 1985.

[13] IEEE, Standard VHDL Language Reference Manu-
al. Standard 1076-1993, New York, NY: IEEE, 1993.

[14] IEEE,Standard Verilog Hardware Description Lan-
guage Reference Manual. Standard 1364-1995, New
York, NY: IEEE, 1995.

[15] ISO,Estelle: A Formal Description Technique Based
on an Extended State Transition Model. Draft Inter-
national Standard 9074, 1987.

[16] ITU, Specification and Description Language
(SDL). Revised Recommendation Z.100, 1992.

[17] R. D. Schlichting and F. B. Schneider, “Understand-
ing and Using Asynchronous Message-Passing,”
Proceedings of 1st ACM SIGACT-SIGOPS Sympo-
sium on Principles of Distributed Computing, Otta-
wa, Canada, pp. 141–147, 1982.

[18] D. E. Thomas and P. R. Moorby,The Verilog Hard-
ware Description Language, Third ed. Boston, MA:
Kluwer Academic Publishers, 1996.

[19] P. A. Wilsey, D. E. Martin, and K. Subramani, “SAV-
ANT/TyVIS/warped: Components for the Analysis
and Simulation ofVHDL,” Proceedings of VHDL
International User’s Forum Spring 1998 Confer-
ence, Santa Clara, CA, pp. 195–201, 1998.

