
TSC691E
Integer Unit

User’s Manual

for Embedded Real time 32–bit Computer

(ERC32)

for SPACE Applications

TSC691E

Rev. G (10/09/96)
toc1MATRA MHS

1. Introduction 1.

2. TSC691E Overview 2.
2.1. SPARC RISC Standard Functions : 2.
2.2. Fault Tolerant and Test Mechanism Improvements : 2.
2.3. Presentation of the ERC32 computing core 2.

2.3.1. Concept 2.
2.3.2. Functional Description 3.

3. Standard IU Function 4.
3.1. Introduction 4.
3.2. Description Of Parts 5.
3.3. Programming Model 5.

3.3.1. Register Windows 5.
3.3.1.1. Windowing 6.

3.3.1.1.1. Parameter Passing 7.
3.3.1.1.2. Window Overflow and Underflow 8.
3.3.1.1.3. Alternate Register Window Usage 9.

3.3.1.2. Special Registers 9.
3.3.2. Processor States 11.
3.3.3. Supervisor/User Modes 11.
3.3.4. Control/Status Registers 11.

3.3.4.1. Program Counters (PC and nPC) 11.
3.3.4.2. Processor State Register (PSR) 12.
3.3.4.3. Window Invalid Mask Register (WIM) 14.
3.3.4.4. Trap Base Register (TBR) 14.
3.3.4.5. Y Register 15.

3.3.5. Data Types 15.
3.3.5.1. Data Organization In Registers 16.
3.3.5.2. Data Organization In Memory 17.
3.3.5.3. Extended Precision 17.

3.4. Instruction Set 18.
3.4.1. Instruction Formats 18.
3.4.2. Addressing 20.

3.4.2.1. Two Register 20.
3.4.2.2. Register Plus 13-Bit Immediate 20.
3.4.2.3. 13-Bit Immediate 20.
3.4.2.4. CALL 21.
3.4.2.5. Branch 21.
3.4.2.6. ASI 22.

3.4.3. Instruction Types 22.
3.4.3.1. Load/Store 22.

3.4.3.1.1. ASI 22.
3.4.3.1.2. Multiprocessing Instructions 23.

3.4.3.2. Arithmetic/Logical/Shift 24.
3.4.3.2.1. Register r[0] 24.

Table of Contents

TSC691E

Rev. G (10/09/96)
toc2 MATRA MHS

3.4.3.2.2. SETHI 25.
3.4.3.2.3. Tagged Arithmetic 25.

3.4.3.3. Control Transfer 25.
3.4.3.3.1. Branching and the Condition Codes 26.
3.4.3.3.2. Trap Instructions 27.
3.4.3.3.3. Calls and Returns 28.

3.4.3.4. Delayed Control Transfer 29.
3.4.3.4.1. PC and nPC 29.
3.4.3.4.2. Delay Instruction 29.
3.4.3.4.3. Annul Bit 30.
3.4.3.4.4. Delayed Control Transfer Couples 30.

3.4.3.5. Read/Write Control Registers 34.
3.4.3.6. Floating-Point-Operate and Coprocessor-Operate 34.
3.4.3.7. Miscellaneous 35.

3.4.4. Op Codes 35.
3.4.4.1. Load/Store Instructions 35.
3.4.4.2. Arithmetic/Logical/Shift Instructions 37.
3.4.4.3. Control Transfer Instructions 39.
3.4.4.4. Read/Write Control Register Instructions 41.
3.4.4.5. Floating-Point/Coprocessor Instructions 41.
3.4.4.6. Miscellaneous Instructions 42.
3.4.4.7. Opcodes In Ascending Numeric Order 43.

3.5. Signal Description 51.
3.5.1. Memory Subsystem Interface Signals 54.

3.5.1.1. A<31:0>—Address Bus (output) 54.
3.5.1.2. APAR—Address Bus Parity (output) 54.
3.5.1.3. AOE—Address Output Enable (input) 54.
3.5.1.4. ASI<7:0>—Address Space Identifier (output) 54.
3.5.1.5. ASPAR—ASI and SIZE Parity (output) 55.
3.5.1.6. BHOLD—Bus Hold (input) 55.
3.5.1.7. COE—Control Output Enable (input) 55.
3.5.1.8. D<31:0>—Data Bus (bidirectional) 55.
3.5.1.9.DPAR—Data Bus Parity (bidirectional) 56.
3.5.1.10. DOE—Data Output Enable (input) 56.
3.5.1.11. DXFER—Data Transfer (output) 56.
3.5.1.12. IFT—Instruction Cache Flush Trap (input) 56.
3.5.1.13. INULL—Integer Unit Nullify Cycle (output) 56.
3.5.1.14. LDSTO—Atomic Load–Store (output) 56.
3.5.1.15. LOCK—Bus Lock (output) 57.
3.5.1.16. MAO—Memory Address Output (input) 57.
3.5.1.17. MDS—Memory Data Strobe (input) 57.
3.5.1.18. MEXC—Memory Exception (input) 57.
3.5.1.19.MHOLD(A/B)—Memory Holds (inputs) 57.
3.5.1.20. RD—Read Access (output) 57.
3.5.1.21. SIZE<1:0>—Bus Transaction Size (outputs) 58.
3.5.1.22. WE—Write Enable (output) 58.
3.5.1.23. WRT—Advanced Write (output) 58.
3.5.1.24. IMPAR—IU to MEC Control Parity (output) 58.

3.5.2. Floating-Point/Coprocessor Interface Signals 58.
3.5.2.1. CCC<1:0>—Coprocessor Condition Codes (input) 58.
3.5.2.2. CCCV—Coprocessor Condition Codes Valid (input) 59.

TSC691E

Rev. G (10/09/96)
toc3MATRA MHS

3.5.2.3. CEXC—Coprocessor Exception (input) 59.
3.5.2.4. CHOLD—Coprocessor Hold (input) 59.
3.5.2.5. CINS1—Coprocessor Instruction in Buffer 1 (output) 59.
3.5.2.6. CINS2—Coprocessor Instruction in Buffer 2 (output) 59.
3.5.2.7. FP—Coprocessor Unit Present (input) 59.
3.5.2.8. CXACK—Coprocessor Exception Acknowledge (output) 59.
3.5.2.9. FCC<1:0>—Floating-Point Condition Codes (input) 59.
3.5.2.10. FCCV—Floating-Point Condition Codes Valid (input) 59.
3.5.2.11. FEXC—Floating-Point Exception (input) 60.
3.5.2.12. FHOLD—Floating-Point Hold (input) 60.
3.5.2.13. FIPAR—FPU to IU Control Parity (input) 60.
3.5.2.14. FINS1—Floating-Point Instruction In Buffer 1 (output) 60.
3.5.2.15. FINS2—Floating-Point Instruction In Buffer 2 (output) 60.
3.5.2.16. FLUSH—Floating-Point/Coprocessor Instruction Flush (output) 60.
3.5.2.17. FP—Floating-point Unit Present (input) 60.
3.5.2.18. FXACK—Floating-Point Exception Acknowledge (output) 60.
3.5.2.19. INST—Instruction Fetch (output) 61.
3.5.2.20. IFPAR—IU to FPU Control Parity (output) 61.

3.5.3. Interrupt and Control Signals 61.
3.5.3.1. ERROR—Error State (output) 61.
3.5.3.2. HWERROR—Hardware error (output) 61.
3.5.3.3. FLOW —Enable FLOW Control (input) 61.
3.5.3.4. MCERR—Comparison error (output) 61.
3.5.3.5. 601MODE—Normal 601MODE Operation (input) 61.
3.5.3.6. CMODE—checker Mode (input) 61.
3.5.3.7. FPSYN—Floating-point Synonym Mode (input) 61.
3.5.3.8. INTACK—Interrupt Acknowledge (output) 62.
3.5.3.9. IRL<3:0>—Interrupt Request Level (input) 62.
3.5.3.10. RESET—Integer Unit reset (input) 62.
3.5.3.11. TOE—Test Mode Output Enable (input) 62.
3.5.3.12. HALT—HALT (input) 62.

3.5.4. TAP signals 62.
3.5.4.1. TCLK—Test Clock (input) 62.
3.5.4.2. TRST—TEST reset (input) 62.
3.5.4.3. TMS—Test Mode Select (input) 62.
3.5.4.4. TDI—Test Data Input (input) 62.
3.5.4.5. TDO—Test Data Output 63.

3.5.5. Power and Clock Signals 63.
3.5.5.1. CLK—Clock (input) 63.
3.5.5.2. VCCO, VCCI, VCCT—Power (inputs) 63.
3.5.5.3. VSSO, VSSI, VSST—Ground (inputs) 63.

3.6. Pipeline and Instruction Execution Timing 63.
3.6.1.Stages 64.

3.6.1.1. Internal Opcodes 64.
3.6.2. Multicycle Instructions 65.

3.6.2.1. Register Interlocks 67.
3.6.2.2. Branching 67.

3.6.3. Pipeline Freezes 69.
3.6.4. Traps 69.

3.7. Bus Operation and Timing 69.
3.7.1. Instruction Fetch 72.

TSC691E

Rev. G (10/09/96)
toc4 MATRA MHS

3.7.2. Load 72.
3.7.3. Load with Interlock 72.
3.7.4. Load Double 73.
3.7.5. Store 73.
3.7.6. Store Double 74.
3.7.7. Atomic Load–Store 75.
3.7.8. Floating-Point Operations 76.
3.7.9. Bus Arbitration 77.
3.7.10. Load with Cache Miss 78.
3.7.11. Store with Cache Miss 79.
3.7.12. Load/Store instruction with Trap 81.
3.7.13. Memory Exceptions 82.
3.7.14. Floating-Point Exceptions 93.
3.7.15. Interrupts 93.
3.7.16. Reset Condition 94.
3.7.17. Error Condition 94.

3.8. Exception Model 96.
3.8.1. Reset 96.
3.8.2. Synchronous Traps 96.

3.8.2.1. External Signals 96.
3.8.2.2. Hardware error 97.
3.8.2.3. Instruction access exception 97.
3.8.2.4. Data access exception 97.
3.8.2.5. Internal/Software 97.
3.8.2.6. Illegal instruction 97.
3.8.2.7. Privileged instruction 97.
3.8.2.8. Fp disabled 97.
3.8.2.9. Cp disabled 97.
3.8.2.10. Window overflow 98.
3.8.2.11. Window underflow 98.
3.8.2.12. Memory address not aligned 98.
3.8.2.13. Tag overflow 98.
3.8.2.14. Trap instruction 98.

3.8.3. Interrupts (Asynchronous Traps) 99.
3.8.3.1. Priority 99.
3.8.3.2. Response Time 100.

3.8.3.2.1. Instruction Response Time on conditional branch instruction (CBI) 101.
3.8.3.3.Interrupt Acknowledge 101.

3.8.4. Floating-Point/Coprocessor Traps 101.
3.8.4.1. Floating-Point Exception 102.
3.8.4.2. Coprocessor Exception 102.

3.8.5. Trap Operation 102.
3.8.5.1. Recognition 102.
3.8.5.2. Trap Addressing 103.
3.8.5.3. Trap Types and Priority 103.
3.8.5.4. Return From Trap 104.

3.9. Coprocessor Interface 104.
3.9.1. Protocol 105.

3.9.1.1. Coprocessor Interface Signals 105.
3.9.2. Register Model 106.
3.9.3. Exceptions 106.

TSC691E

Rev. G (10/09/96)
toc5MATRA MHS

4. Fault Tolerant and Test Mechanism 107.
4.1. Fault Tolerant and Test Support signals 108.
4.2. Program Flow Control 109.

4.2.1. Introduction 109.
4.2.2. Example of Program Flow Control 109.

4.3. Parity Checking 110.
4.3.1. Introduction 110.
4.3.2. Trap handling 110.
4.3.3. Priority within hardware traps for IU 111.
4.3.4. Parity Checking on Register File and Control/Status Registers 111.
4.3.5. Parity Checking on Control Signal for the FPU 112.

4.3.5.1. Output control signals 112.
4.3.5.2. Input control signals 112.

4.3.6. Parity Checking on Control Pads for the TSC693E (MEC) 112.
4.3.6.1. Output control signals 112.
4.3.6.2. Input control signals 112.

4.3.7. Parity Checking on Control Pads for the Coprocessor 112.
4.3.8. Parity Generation on ADDRESS Bus 112.
4.3.9. Parity Checking on DATA Bus 112.
4.3.10. Non RT 601 Mode 113.
4.3.11. Error Type for external signals parity errors 113.

4.4. Master/checker operation 113.
4.4.1. Basic function 113.

4.4.1.1. Master/Checker Signal description 114.
4.4.1.1.1. MCERR—Comparison Error (output) 114.
4.4.1.1.2.CMODE—checker Mode (input) 114.

4.5. IEEE Standard Test Access Port & Boundary-Scan Architecture 114.
4.5.1. TAP 114.

4.5.1.1. TCLK (input) 115.
4.5.1.2. TMS (input) 115.
4.5.1.3. TDI (input) 115.
4.5.1.4. TRST (input) 115.
4.5.1.5. TDO (output) 115.

4.5.2. TAP Controller 115.
4.5.3. The Instruction Register 115.

4.5.3.1. Design and Construction of the instruction register 115.
4.5.3.2. BYPASS Instruction 116.
4.5.3.3. EXTEST Instruction 116.
4.5.3.4. INTEST Instruction 116.
4.5.3.5. SAMPLE/PRELOAD Instruction 116.

4.5.4. The Device Identification Register 116.
4.5.5. Internal Scan Path 116.
4.5.6. Boundary scan test register 116.

4.6.Interleaving register file bits 117.

5. Electrical and Mechanical Specification 118.
5.1. Maximum rating and DC Characteristics 118.

5.1.1. Maximum Ratings 118.
5.1.2. Operating Range 118.
5.1.3. DC Characteristics Over the Operating Range 118.
5.1.4. Capacitance Ratings [7,8] 119.

TSC691E

Rev. G (10/09/96)
toc6 MATRA MHS

5.1.5. AC Test Loads and Waveforms 119.
5.2. TSC691E AC Characteristics 119.

5.2.1. AC Characteristics Over the Operation Range [1] 119.
5.2.2. Waveforms 122.

5.2.2.1. Clock and ERROR/ RESET Timing 122.
5.2.2.2. Clock and HWERROR Timing for Parity Error Type 122.
5.2.2.3. TOE De–assertion/Assertion 123.
5.2.2.4. Load Timing 123.
5.2.2.5. Store Timing 124.
5.2.2.6. Load with Cache Miss 125.
5.2.2.7. Memory Exception Timing 126.
5.2.2.8. Bus Arbitration Timing 126.
5.2.2.9. Floating-Point Timing 127.
5.2.2.10. TAP Signals 127.
5.2.2.11. PARITY Signals 128.
5.2.2.12. MASTER/CHECKER Signals 128.
5.2.2.13. IRL[3:0] Signals 129.
5.2.2.14. HALT Signal timing 129.

5.3. Package Description 130.
5.3.1. 256-Pin MQFP_F Package 130.
5.3.2. 256-Pin MQFP_F Pin Assignments 131.

TSC691E

Rev. G (10/09/96)
fig.1MATRA MHS

Figure 1. ERC32 Architecture 3.

Figure 2. Integer Unit Block Diagram 4.

Figure 3. SPARC Register Model 5.

Figure 4. Circular Stack of Overlapping Windows 6.

Figure 5. Overlapping Windows 7.

Figure 6. Registers as Seen by a Procedure 8.

Figure 7. Register Banks for Fast Context Switching 10.

Figure 8. Processor State Register 12.

Figure 9. Window Invalid Mask 14.

Figure 10. Trap Base Register 14.

Figure 11. Processor Data Types 16.

Figure 12. Byte Operand Load and Store 17.

Figure 13. Data Organization in Memory 17.

Figure 14. Extended–Precision Data Organization in Registers 18.

Figure 15. Extended–Precision Data Organization in Memory 18.

Figure 16. Instruction Format Summary 19.

Figure 17. Address Generation 21.

Figure 18. Tagged Data Example 25.

Figure 19. Ticc Trap Address Generation 28.

Figure 20. Delayed Control Transfer 30.

Figure 21. Delayed Control Transfer Couples 33.

Figure 22. TSC691E External Signals 51.

Figure 23. ASI timing with a WRPSR Instruction 55.

Figure 24. Processor Instruction Pipeline 63.

Figure 25. Pipeline with All Single–Cycle Instructions 64.

Figure 26. Pipeline with One Double–Cycle Instruction (Load) 65.

Figure 27. Pipeline with One Triple–Cycle Instruction (Store) 66.

Figure 28. Pipeline with Hardware Interlock (Load) 67.

Figure 29. Pipeline During Branch Instruction 68.

Figure 30. Branch with Annulled Delay Instruction 68.

Figure 31. Pipeline Frozen During Bus Arbitration 69.

Figure 32. Pipeline Operation for Taken Trap (Internal) 70.

Figure 33. Data Bus Contents During Data Transfers 71.

Figure 34. Instruction Fetch 72.

Figure 35. Load Single Integer Timing 72.

Figure 36. Load Single with Interlock Timing 73.

Figure 37. Load Double Integer Timing 73.

Figure 38. Store Single Integer Timing 74.

Figure 39. Store Double Integer Timing 75.

Figure 40. Atomic Load–Store Timing 76.
Figure 41. Floating–Point Operation Timing 77.

Figure 42. Bus Arbitration Timing 78.

List of Figures

TSC691E

Rev. G (10/09/96)
fig.2 MATRA MHS

Figure 43. Load with Cache Miss Timing 79.

Figure 44. Store with Cache Miss Timing (1 of 2) 80.

Figure 45. Store with Cache Miss Timing (2 of 2) 81.

Figure 46. Ld, LdSt, St and Swap Inst with Trap Taken 82.

Figure 47. Load with Memory Exception Timing (1 of 2) 83.

Figure 48. Load with Memory Exception Timing (2 of 2) 84.

Figure 49. Instruction Memory Access Exception Timing 85.

Figure 50. Instruction Memory Access Exception Timing (LD in Execute stage) 86.

Figure 51. Store with Memory Exception Timing (page 1 of 2) 87.

Figure 52. Store with Memory Exception Timing (page 2 of 2) 88.

Figure 53. Store double with Memory Exception on 1st data address (page 1 of 2) 89.

Figure 54. Store double with Memory Exception on 1st data address (page 2 of 2) 90.

Figure 55. Store double with Memory Exception on 2nd data address (page 1 of 2) 91.

Figure 56. Store double with Memory Exception on 2nd data address (page 2 of 2) 92.

Figure 57. Floating–Point Exception Handshake Timing 93.

Figure 58. Asynchronous Interrupt Timing 93.

Figure 59. Power–On Reset Timing 94.

Figure 60. Error/Reset Timing 95.

Figure 61. Best–Case Interrupt Response Timing (one cycle instruction) 99.

Figure 62. Double Cycles Instruction Interrupt Response Timing (ex: Load) 99.

Figure 63. Triple-Cycles Instruction Interrupt Response Timing (ex: Store) 100.

Figure 64. Four-Cycles Instruction Interrupt Response Timing (Store Double) 100.

Figure 65. Interrupt Response Timing on conditional branch instruction (B*A,a & B*cc,aNT) 101.

Figure 66. Coprocessor Register Model 106.

Figure 67. Master/Checker configuration 114.

Figure 68. Instruction Register Cell 115.

Figure 69. Boundary Scan Cell 117.

TSC691E

Rev. G (10/09/96)
tab.1MATRA MHS

Table 1. Register Addressing 6.

Table 2. Floating–Point Formats 15.

Table 3. Extended–Precision Floating–Point Format 18.

Table 4. op field Coding 20.

Table 5. op2 Field Coding 20.

Table 6. ASI Assignments 22.

Table 7. Load/Store Instructions 23.

Table 8. Arithmetic/Logical/Shift Instructions 24.

Table 9. Control Transfer Instructions 26.

Table 10. Control Transfer Instruction Characteristics 26.

Table 11. Bicc and Ticc Condition Codes 27.

Table 12. FBfcc Condition Codes 27.

Table 13. CBccc Condition Codes 27.

Table 14. Delayed Control Transfer Instruction Example 29.

Table 15. Effect of Annul Bit Reset (a=0) 29.

Table 16. Effect of Annul Bit Reset (a=1) 29.

Table 17. Effect of Annul Bit on Delay Instruction 30.

Table 18. Delayed Control Transfer Couple Instruction Sequence 32.

Table 19. Execution of Delayed Control Transfer Couples 32.

Table 20. Read/Write Control Register Instructions 34.

Table 21. Floating–Point–Operate and Coprocessor–Operate Instructions 34.

Table 22. Miscellaneous Instructions 34.

Table 23. Load/Store Instruction Opcodes 35.

Table 24. 37.

Table 25. Arithmetic/Logical/Shift Instruction Opcodes 37.

Table 26. 39.

Table 27. Control Transfer Instruction Opcodes 39.

Table 28. Bicc and Ticc Condition Codes 40.

Table 29. FBfcc Condition Codes 40.

Table 30. CBccc Condition Codes 40.

Table 31. Read/Write Control Register Instruction Opcodes 41.

Table 32. Floating–Point/Coprocessor Instruction Opcodes 41.

Table 33. Miscellaneous Instruction Opcodes 42.

Table 34. Instruction Opcode Numeric Listing 43.

Table 35. Instruction Opcode Numeric Listing (continued) 44.

Table 36. Instruction Opcode Numeric Listing (continued) 46.
Table 37. Instruction Opcodes Numeric Listing (continued) 48.

Table 38. Instruction Opcodes Numeric Listing (continued) 50.

Table 39. TSC691E External Signal Summary 52.

Table 40. TSC691E External Signal Summary (continued) 53.

Table 41. ASI Assignments 55.

Table 42. SIZE Bit Encoding 58.

List of Tables

TSC691E

Rev. G (10/09/96)
tab.2 MATRA MHS

Table 43. Internally Generated Opcodes 65.

Table 44. Externally Generated Synchronous Exception Traps 96.

Table 45. Trap Type and Priority Assignments 103.

Table 46. Trap Type and Priority Assignments (continued) 104.

Table 47. Error Type Assignments 111.

Table 48. Hardware Priority 111.

Table 49. Hardware error type for user registers 112.

Table 50. Hardware error type for external signals 113.

TSC691E

Rev. H (02 Dec. 96)
1MATRA MHS

1. Introduction

This document presents the specification of the TSC691E RT Integer Unit. It is organized in three main chapters:
� Standard IU (TSC691E) Functions (Chapter 3)

� Fault MECHANISM and Test MECHANISM (Chapter 4)

� Electrical and Mechanical Specification (Chapter 5)

Chapter 3 presents the SPARC RISC USER’S GUIDE from Cypress Semiconductor including some adaptations due
to the introduction of fault tolerant MECHANISMs, without losing the full binary compatibility with the entire SPARC
V7.0 application software base.

Chapter 4 and Chapter 5 deal with the new added functions introduced in the TSC691E to improve the reliability of
space applications. These new functions also do not impact the SPARC V7.0 compatibility.

TSC691E RT Integer Unit

TSC691E

Rev. H (02 Dec. 96)
2 MATRA MHS

2. TSC691E OVERVIEW

2.1. SPARC RISC STANDARD FUNCTIONS :

� Full binary compatibility with entire SPARC V7.0 application software base

� Architecture efficiency that sustains 1.25 to 1.5 clocks per instruction

� Large windowed register file

� Tightly coupled floating-point interface

� User/supervisor modes for multitasking

� Semaphore instructions and alternate address spaces for multiprocessing

2.2. Fault Tolerant and Test Mechanism Improvements:

� Parity checking on 98.7% of the total number of latches with hardware error traps

� Parity checking of address, data pads and control pads

� Program flow control

� Master/Checker operation

� IEEE Standard Test Access Port & Boundary-Scan Architecture

� Possibility to disable the bus parity checking

� Manufactured using TEMIC Space hardened 0.8 µm SCMOS RT TECHNOLOGY

� Part of the ERC32 high performance 32-bit computing core

To support applications requiring an extremely high level of reliability, the following improvements were introduced
in the standard SPARC RISC processor TSC691:
� Several independent fault detection MECHANISMs to support the design of fault tolerant systems

� Such as odd parity checking, Program Flow Control and Master/Checker operations.

� Support of sophisticated PC board level test using the IEEE Standard Test Access Port and

� Boundary Scan Architecture

� Hardening of the process by construction, applying restricted full static CMOS design rules for

� all critical blocks of the circuit such as register file, PLAs, ROMs etc...

� Hardened device processing using the TEMIC 0.8 µm SCMOS-RT TECHNOLOGY.

Thanks to careful handling of the improvements, the introduced modifications have neither reduced

the performance of the device nor changed the full binary compatibility with the entire SPARC V7.0

application software.

2.3. Presentation of the ERC32 computing core

The TSC691E Integer Unit is, with the TSC692E Floating Point Unit and the TSC693E (Memory controller), a part
of the ERC32 computing core.

2.3.1. Concept

The objective of the ERC32 is to provide a high performance 32-bit computing core, with which computers for
on-board embedded real-time applications can be built. The core will be characterized by low circuit complexity and
power consumption. Extensive concurrent error detection and support for fault tolerance and reconsideration will also
be emphasized.

In addition to the main objective the ERC32 core should be possible to use for performance demanding research
applications in deep space probes. The radiation tolerance and error masking are therefore important. For the real-time

TSC691E

Rev. H (02 Dec. 96)
3MATRA MHS

applications the system might be fail-operational rather than fail-safe. By including support for reconfiguration of the
error-handling the different demands from the applications can be optimized for the best purpose in each case.

The ERC32 will be used as a building block only requiring memory and application specific peripherals to be added
to form a complete on-board computer. All other system support functions are provided by the core.

2.3.2. Functional Description

The ERC32 incorporates the followings functions:
� Processor, which consists of one integer unit and one floating point unit. The processor includes concurrent error

detection facilities.

� Memory controller (TSC693E), which is a unit consisting of all necessary support functions such as memory control
and protection, EDAC, wait state generator, timers, interrupt handler, watch dog, UARTs and test and debug
support. The unit also includes concurrent error detection facilities.

� Oscillator (optional).

� Buffers necessary to interface with memory and peripherals.

Figure 1 schematically shows the ERC32 architecture and external functions added to form a complete system.

Floating
Point Unit

Integer
Unit

Memory
Controller

I/O Port

Memory Port

Address Port

DMA Port

DATA

Address

Chip Select

WE

QE

I/O Select

I/O R/W

I/O Ready

IRQ
IRQ Ack

EDAC checkbit

TSC693E

TSC692E

TSC691E

Figure 1. ERC32 Architecture

TSC691E

Rev. H (02 Dec. 96)
4 MATRA MHS

3. Standard IU Function

3.1. Introduction

This section describes the workings of the TSC691E Integer processing Unit (IU), the main computing engine in the
SPARC architecture. The TSC691E RT is based on the SPARC 32-bit RISC architecture, which defines a processor
capable of execution at a rate approaching one instruction per clock cycle. The TSC691E supports a tightly-coupled
Floating-Point coprocessor Unit (FPU) and a second, system-specific coprocessor, all three of which may operate
concurrently. The TSC691E executes all instructions except floating-point-operate and coprocessor-operate
instructions.

A block diagram of the TSC691E is shown in Figure 2 . The processor is organized around the ALU and the shift unit.
These are both two-operand units, accepting 32-bit information from either source 1 or source 2 of the register file,
the program counters, or the instruction decoder. ALU or shift unit results may be passed to the register file, address
bus, program counters, control registers, or back to themselves. One of the characteristics of the SPARC load/store
architecture is that neither the ALU nor the shift unit directly pass results to the instruction/data bus. Memory data
moves in and out of the register file through alignment units to and from the instruction/data bus. Instructions are taken
directly from the bus and fed to a four-stage instruction pipeline.

Destination

Source 1 Source 2

Register File
136 x 32bits

Arithmetic
and Logic

Unit
Shift Unit

Program
Counters

Processor State
Window Invalid

Trap Base
Multiply Step

Instruction
Decode

Address Instruction/ Data

PC Adder

Align

Align

Figure 2. Integer Unit Block Diagram

TSC691E

Rev. H (02 Dec. 96)
5MATRA MHS

SUPERVISOR

MULTIPLY STEP (Y)

FLOATING-POINT REGISTERS
(32)

OUTS (8)

INS(8)

LOCALS(8)

GLOBALS(8)

TRAP BASE REG (TBR)

PROCESSOR STATE REG (PSR) FLOATING POINT QUEUE
(FPQ) (3)

COPROCESSOR REGISTERS
(32)

WORKING

REGISTERS

Current window

within set of

136 r Registers

ONLY

FLOATING POINT STATUS COPROCESSOR STATUS (CSR)

WINDOW INVALID MASK

IU REGISTER FPU Registers (optional) Coprocessor Registers (optional)

COPROCESSOR QUEUE (CPQ)

(WIM)

(FSR)

Figure 3. SPARC Register Model

The SPARC architecture uses a “windowed” register file model in which the file is divided up into groups of registers
called windows. This windowed register model simplifies compiler design, speeds procedure calls, and efficiently
supports A/I programming languages such as Prolog, LISP and Smalltalk.

A unique pair of coprocessor interfaces and a common connection to the system data and virtual address busses form
the physical interface between the IU, the FPU, and a coprocessor. The coprocessor interfaces provide the
synchronization and error handling that enable all three processors to operate concurrently. A common interface to the
virtual address bus and data bus permits the IU to provide all addresses for floating–point and coprocessor load and
store instructions.

3.2. Description Of Parts

The integer unit TSC691E contains a 136 x 32 register file divided into eight overlapping windows. It is supplied in
256-pins MQFP packages, which allows 32-bit address and data busses, an eight-bit ASI bus, a number of control lines,
and floating-point–coprocessor, second coprocessor interfaces and 29 signals supporting fault tolerance and test
MECHANISM.

3.3. Programming Model

This section describes the TSC691E’s register model, register window MECHANISM, processor states,
supervisor/user modes, control/status registers, and data types. The concepts and properties explained here are central
to an understanding of the TSC691E’s operation.

The register set shown in Figure 3 is a snapshot of the registers the TSC691E sees at any given moment. The working
registers constitute the current window on the register file. Registers within the shaded area are accessible only in the
supervisor mode.

Working registers are used for normal operations and are called r registers in the TSC691E, f registers in the FPU, and
c registers in the coprocessor. The various control/status registers keep track of and/or control the state of each
processor.

3.3.1. Register Windows

The 136 r registers of the TSC691E are 32–bits wide and are divided into a set of 128 window registers and a set of
eight global registers. The 128 window registers are grouped into eight sets of 24 r registers called windows.

TSC691E

Rev. H (02 Dec. 96)
6 MATRA MHS

Table 1. Register Addressing

Register numbers Name

r[24] to r[31] ins

r[16] to r[23] locals

r[8] to r[15] outs

r[0] to r[7] globals

The SPARC architecture supports a maximum of 32 windows. The currently active window (the window visible to the
programmer) is identified by the Current Window Pointer (CWP), a 5-bit field in the Processor State Register (PSR)
(see Section 3.3.4.2).

At any given time, a program can address 32 active registers: 24 window registers and the eight globals. By software
convention, the window registers are divided into 8 ins, 8 locals, and 8 outs. Registers are addressed as shown in
Table 1 .

The current window pointer (CWP) acts as an index pointer within the stack of 128 window registers. Changing the
current window pointer by one offsets r register addressing by 16. Since 24 r registers can be addressed by a single CWP
value, incrementing or decrementing the CWP results in an eight register overlap between windows. This overlap of
window registers is used to pass parameters from one window to the next.

3.3.1.1. Windowing

The register file is implemented as a circular stack, with the highest numbered window joined to the lowest. In the
TSC691E, window 7 adjoins window 0 (see Figure 4).

W 1

W 5

w0 locals

w7 locals

w4 locals

CWP

GLOBALS

w0 outs
w6 ins

w6 outs

w4 outs

w4 ins

w5 outs

w5 ins

w6 locals

w3 insw3 locals

w3 outs

w2 ins

w2 outs

w0 ins

w1 ins

w7 ins

w7 outs

w2 locals

RESTORE

SAVE

W 2

W 4

W 6

W 0

W 7

W 3

w1 locals

w1 outs

w5 locals

Figure 4. Circular Stack of Overlapping Windows

TSC691E

Rev. H (02 Dec. 96)
7MATRA MHS

INS
r 31

r 24

..

r 23

r 16

r 15

r 8

.

.

.

.

LOCALS

OUTS INS
r 31

r 24

.

.

r 23

r 16

r 15

r 8

.

.

.

.

LOCALS

OUTS INS
r 31

r 24

.

.

r 23

r 16

r 15

r 8

.

.

.

.

LOCALS

OUTS

r 7

r 0

.

. GLOBALS

Previous Window (CWP + 1)

Current Window (CWP)

Next Window (CWP - 1)

Save

Restore

Figure 5. Overlapping Windows

Note that each window shares its ins and outs with adjacent windows (refer to Figure 5). Outs from a previous window
(CWP+1) are the ins of the current window, and the outs of the current window are the ins of the next window
(CWP - 1). While only adjacent windows share ins and outs, globals are shared by all windows. A window’s locals,
on the other hand, are not shared at all, belonging only to that window.

After power–on reset, the state of the current window pointer and the WIM register (see Section 3.3.4.3) are undefined.
The power–on reset trap routine must initialize the CWP and WIM register for correct operation.

3.3.1.1.1. Parameter Passing

Register window overlap provides an efficient means of passing parameters during procedure calls and returns. One
method of implementing a procedure call that takes advantage of the overlap is to have the calling procedure move
the parameters to be passed into its outs registers, then execute a CALL instruction. A SAVE instruction then
decrements the CWP to activate the next window. The calling procedure’s outs become the called procedure’s ins,
making the passed parameters directly accessible.

When a called procedure is ready to return results to the procedure that called it, those results are moved into its ins
registers and it then executes a return, usually with a JMPL instruction. A RESTORE instruction increments the CWP
to activate the previous window. The called procedure’s ins are still the calling procedure’s outs; thus the results are
available to the calling procedure. Note that the terms ins and outs are defined relative to calling, not returning.

If the calling procedure must pass more parameters than can be accommodated by the outs and globals, the additional
parameters must be passed on the memory stack. One method of handling the stack pointer is to dedicate an out register
in the current window to hold the stack pointer (see Figure 6). After a call, this pointer (which is now in an ins register)
can be used as the frame pointer for the called procedure. The SAVE instruction, in addition to decrementing the CWP,
also performs an ADD using registers from the current window and placing the result in a register in the next window.
This feature can be used to set a new stack pointer for the called procedure from the old pointer in the calling procedure.
RESTORE also performs an ADD, using registers in the current window and placing the result in the previous window.

TSC691E

Rev. H (02 Dec. 96)
8 MATRA MHS

r31 (i7) return address

r30 (FP) frame pointer

r29 (i5) incoming param reg 5

in r28 (i4) incoming param reg 4

r27 (i3) incoming param reg 3

r26 (i2) incoming param reg 2

r25 (i1) incoming param reg 1

r24 (i0) incoming param reg 0

r23 (l7) local 7

r22 (l6) local 6

r21 (l5) local 5

local r20 (l4) local 4

r19 (l3) local 3

r18 (l2) local 2

r17 (l1) local 1

r16 (l0) local 0

r15 (o7) temp

r14 (SP) stack pointer

r13 (o5) outgoing param reg 5

out r12 (o4) outgoing param reg 4

r11 (o3) outgoing param reg 3

r10 (o2) outgoing param reg 2

r9 (o1) outgoing param reg 1

r8 (o0) outgoing param reg 0

r7 (g7) global 7

r6 (g6) global 6

r5 (g5) global 5

global r4 (g4) global 4

r3 (g3) global 3

r2 (g2) global 2

r1 (g1) global 1

r0 (g0) 0

f31 floating–point value

floating : :
point

f0 floating–point value

Figure 6. Registers as Seen by a Procedure

3.3.1.1.2. Window Overflow and Underflow

No matter how many windows a register file has, it is possible that at some point the program will try to use more than
are available. Since the register file is a circular stack, something must be done to prevent overwriting the oldest
window as the stack wraps around.

The TSC691E handles this by allowing bits in the Window Invalid Mask (WIM) register to be set, which are used to
mark windows that will trigger an underflow or overflow trap (see Section 3.3.4.3). If a SAVE instruction points the

TSC691E

Rev. H (02 Dec. 96)
9MATRA MHS

CWP to a marked window, a window overflow trap is generated. This means that in the TSC691E, only seven of the
eight windows are available for calls, because the last window must be saved for the trap handler. However, since a
typical overflow trap handler would transparently save one or more of the oldest windows to memory, the program sees
an apparently infinite number of windows.

The TSC691E automatically decrements the CWP upon encountering a trap. This happens without generating another
window overflow trap, regardless of the state of the WIM register. By setting at least one window as masked by the
WIM register, the system is assured of at least one window for use by the trap handler.

A RESTORE instruction will cause a window underflow trap if it attempts to restore to a window invalidated by the
WIM register. Execution of a return from Trap (RETT) instruction under the same circumstances will also generate
an under trap. SAVE, RESTORE, and RETT always check the WIM register before completing their actions.

As an example, in Figure 4 , if the procedure using the window labeled w0 executes a CALL and SAVE sequence, a
window overflow trap will occur (assuming WIM bit 7 is set). The overflow trap handler may safely use only the locals
of w7, because w7’s ins are w0’s outs and w7’s outs are w6’s ins.

Active window = 0 CWP = 0
Previous window = 1 CWP+1 = 1
Next window = 7 CWP-1 = 7
Trap window = 7 WIM = 10000000(base 2)

The overflow trap handler is responsible for saving one or more of the least recently used windows to the memory stack.
Simulations of register file management methods show that saving and restoring one window at a time is the simplest
and most effective algorithm for handling overflow and underflow. The stack pointer to the window-save area must
be aligned to a word boundary in valid memory and, for efficiency, should be doubleword aligned. This is because it
is faster to load and store doublewords than to load and store words.

A linear sequence of doubleword loads and stores is also used to speed up context switches. In a context switch, only
the windows containing valid data are saved, and on average this is about half the number of TSC691E windows, minus
one for the reserved trap window.

3.3.1.1.3. Alternate Register Window Usage

Although the windowing layout is particularly well suited to procedure calls and returns, hardware does not force their
use for that purpose alone. Except for the eight-register overlap and the partial fixing of the function of several registers
by the instruction set (see Section 3.3.1.2), register windows can be viewed and manipulated as needed to fit the
application at hand.

For example, the register set can be treated as a flat register file. Access to any particular register in any window is
obtained by writing its window value into the current window pointer located in the processor state register. Moreover,
windows naturally segment registers into blocks that could be dedicated to specific purposes and accessed through the
CWP. Register saving and parameter passing could be done with a standard push/pop stack in memory, although this
would substantially increase bus traffic.

For real-time and embedded controller systems, where fast context switching may be more important than procedure
calling, the register file can easily be divided into banks of registers separated by trap handling windows set up by the
WIM register (see Section 3.3.4.3). Switching from one register bank to another is accomplished by writing to the CWP
field of the processor state register. Figure 7 shows the TSC691E register file divided into four banks, each with its
own trap handler window of eight local registers. Globals are accessible by all processes.

3.3.1.2. Special Registers

In general, the window registers seen at any given time can be used in any manner desired, while keeping in mind that
windows overlap at both ends. However, the instruction set does fix the use of r[0] and partially fixes the use of r[15].

Global register r[0] always returns the value 0 when read, making the most frequently used constant easily available
at all times. In addition, when addressed as a destination operand, r[0] discards the value written to it.

The CALL instruction writes its own address into register r[15] (out register 7) of the calling procedure’s window. If
a SAVE instruction then activates a new window, r[15] of the old window becomes r[31] (in register 7) of the new
window and serves as the return address to the calling procedure. However, if the register is needed for some other
purpose, the return address can be saved to a stack or simply overwritten.

TSC691E

Rev. H (02 Dec. 96)
10 MATRA MHS

Register Bank 3
(Window 7)

Register Bank 2
(Window 5)

Register Bank 1
(Window 3)

Register Bank 0
(Window 1)

WIM Register

7 6 5 4 3 2 1 0

10101010

RESERVED

UNUSED

Trap registers for bank 3
(Window 6)

RESERVED

UNUSED

Trap registers for bank 2
(Window 4)

RESERVED

UNUSED

Trap registers for bank 1
(Window 2)

RESERVED

UNUSED

Trap registers for bank 0
(Window 0)

The upper eight registers of the trap window are reserved for
parameter passing from the register bank, if desired.

The lower eight registers of the trap window are unused, since
they are shared with the next register bank. These can be used
to pass parameters to the next register bank, if desired.

The WIM register is used to separate the r regis-
ters into register banks. Register banks are
switched by writing into the CWP field of the
processor state register (PSR).

The TSC691E automatically enters the next window (CWP -
1) upon encountering a trap, regardless of the state of the
WIM register. This feature is used to reserve windows for a
trap handler.

GLOBAL
REGISTERS

r15
.

r23
.

r31
.

r15
.

r23
.

r31
.

r15
.

r23
.

r31
.

r15
.

r23
.

r31
.

r15
.

r23
.

r31
.

r15
.

r23
.

r31
.

r15
.

r23
.

r31
.

r15
.

r23
.

r31
.
r24

r16

r8 r24

r16

r24

r16

r8

r8

r24

r16

r8r24

r16

r8 r24

r16

r8

r24

r16

r8

r8

r16

r24

r7

r0
.
.

Figure 7. Register Banks for Fast Context Switching

TSC691E

Rev. H (02 Dec. 96)
11MATRA MHS

Two other registers are also used by hardware to save information during a trap. Registers r[17] and r[18] (locals 1 and
2) of the trap window (not the trapping procedure’s window) are used to save the contents of the program counters (PC
and nPC) at the time the trap is taken. Because the trap window locals are all a trap handler is allowed to use (unless
it saves to the system stack), this limits the trap handler’s usable registers to six.

3.3.2. Processor States

The TSC691E is always in one of three possible states: execute mode, reset mode, or error mode. Execute mode is the
normal operating mode.

The processor enters error mode (at which point it halts and asserts ERROR) if a synchronous trap is generated while
traps are disabled (see Section 3.8). The TSC691E remains in error mode until the RESET signal is asserted, whereupon
it enters reset mode. The external system is responsible for asserting RESET whenever the error mode signal, ERROR,
is detected.

Reset mode is entered whenever the RESET signal is asserted (see Section 3.5). The processor remains in that mode
until RESET is deasserted. RESET signal must be asserted nine clocks at least. Upon deassertion, the processor enters
execute mode, where the first instruction address to be executed is address 0 in the supervisor instruction address space
(see Sections 3.3.3 and 3.4.2.6).

The TSC691E fetches instructions in the execute mode. If the instruction belongs to the floating-point unit or second
coprocessor, execution is directed to the appropriate coprocessor. Otherwise, the instruction is executed by the integer
unit.

3.3.3. Supervisor/User Modes

In support of multitasking, the TSC691E employs a supervisor/user model of operation. The processor is in supervisor
mode when the S bit in the Processor State Register (PSR) is set, and in user mode when S is reset (see Section 3.3.4.2).
The state of this bit determines which address space is accessed with the ASI bits (see Section 3.4.2.6) and whether
or not privileged instructions may be used. Privileged instructions restrict control register access to supervisor software,
preventing user programs from accidentally altering the state of the machine.

In non-multitasking situations, such as embedded systems, user (application) code would probably run in supervisor
mode to gain access to the PSR’s CWP field and other control registers. The only way a program running in user mode
may enter supervisor mode is to encounter a software or hardware trap. A return to user mode is accomplished by
executing a Return from Trap (RETT) instruction, which restores the state of the S bit to what it was before the trap
was taken. A commonly used trap return is the JMPL, RETT delayed control transfer couple (refer to Section 3.4.3.4.4).
This restores both the PC and nPC and the previous state of the S bit.

3.3.4. Control/Status Registers

TSC691E control/status registers are all 32 bits wide. The two program counters can only be read to and written to
indirectly using such instructions as a CALL, JMPL, software trap (Ticc), and Return from Trap (RETT). The Processor
State Register (PSR), Window Invalid Mask (WIM), Trap Base Register (TBR), and multiply-step register (Y), are all
read/write registers. Read/write instructions that access the PSR, WIM, and TBR are privileged and thus may only be
used in supervisor mode.

Two of these registers, the PSR and TBR, have both read-only status fields and programmable read/write mode fields.
In Figure 8 and Figure 10 , the read-only status fields appear in lower case italic (for example, impl) while the writable
mode fields appear in UPPER CASE (for example, PIL).

3.3.4.1. Program Counters (PC and nPC)

The Program Counter (PC) contains the address of the instruction currently being executed by the TSC691E, and the
next Program Counter (nPC) holds the address (PC + 4) of the next instruction to be executed (assuming there is no
control transfer and a trap does not occur). The nPC is necessary to implement delayed control transfers, wherein the
instruction that immediately follows a control transfer may be executed before control is transferred to the target
address (see Section 3.4.3.4). Having both the PC and nPC available to the trap handler allows a trap handler to choose
between retrying the instruction causing the trap (after the trap condition has been eliminated) or resuming program
execution after the trap causing instruction.

TSC691E

Rev. H (02 Dec. 96)
12 MATRA MHS

3.3.4.2. Processor State Register (PSR)

31 28 24 14 13 12 8 7 6 5 0

Integer

Reserved

Enable Coprocessor (EC)*
Enable Floating-Point Unit (EF)

Processor

Supervisor Mode (S)
Previous Supervisor Mode (PS)

Trap Enable (ET)

Current

Pointer

51114116444

WindowInterrupt
Level

Condition
Codes

Version
Number

Implementation
Number

IU IU

23 22 21 20

negative zero overflow carry

(CWP)(PIL)(impl) (ver) (ICC)

(N) (Z) (V) (C)

27 11 4

Figure 8. Processor State Register

This is the TSC691E’s key status and control register, containing fields that report the status of processor operations
or control processor operations. Instructions that modify its fields include SAVE, RESTORE, Ticc, RETT, and any
instruction that modifies the condition code field (icc). Any hardware or software action that generates a trap will
modify the S, PS, and ET fields. The PSR may be read or written directly using the privileged instructions RDPSR and
WRPSR. The PSR is made up of the following fields:

impl—Implementation
Bits 28 through 31 contain the processor’s implementation number. The implementation number for the TSC691E
is 001. WRPSR does not modify this field.

ver—Version
Bits 24 through 27 contain the TSC691E’s version number. WRPSR does not modify this field. The current version
number for the TSC691E is 0001.

icc—Integer Condition Codes
Bits 20 through 23 hold the integer unit’s condition codes. These bits are modified by arithmetic and logical instruc-
tions whose names end with the letters cc (for example, ANDcc), and can be overwritten by the WRPSR instruction.
The Bicc and Ticc instructions base their control transfer on these bits, which are defined as follows:

N—Negative
Bit 23 indicates whether the ALU result was negative for the last icc-modifying instruction.

0 = not negative
1 = negative

Z—Zero
Bit 22 indicates whether the ALU result was zero for the last icc-modifying instruction.

0 = result was nonzero
1 = result was zero

V—Overflow
Bit 21 indicates whether an arithmetic overflow occurred during the last icc-modifying instruction. The
overflow bit is also set if a tagged operation (TADDcc, TSUBcc, etc.) is performed on non–tagged operands
(refer to Section 3.4.3.2.3). Logical instructions that modify the icc field always set the overflow bit to 0.

0 = arithmetic overflow did not occur
1 = arithmetic overflow did occur

C—Carry
Bit 20 indicates whether an arithmetic carry out of result bit 31 occurred from the last icc-modifying addition
or if a borrow into bit 31 resulted from the last icc-modifying subtraction. Logical instructions that modify
the icc field always set the carry bit to 0.

 0 = a carry/borrow did not occur

TSC691E

Rev. H (02 Dec. 96)
13MATRA MHS

 1 = a carry/borrow did occur

Reserved
Bits 14 through 19 are reserved. A WRPSR should write only 0s to this field.

EC—Coprocessor Enabled
This bit determines whether the optional second coprocessor is enabled or disabled.

0 = disabled

1 = enabled

If the coprocessor is either disabled or enabled but not present, a CPop, CBccc, or coprocessor load/store instruction
will cause a coprocessor-disabled trap. When the CP is disabled, it retains that state until it is re–enabled or reset.
Even when disabled, the coprocessor can continue to execute instructions if it contains a queue.

EF—Floating-Point Unit Enabled
Bit 12 determines whether the FPU is enabled or disabled.

0 = disabled

1 = enabled

If the FPU is either disabled or enabled but not present, an FPop, FBfcc, or floating-point load/store instruction will
cause a floating-point-disabled trap. When disabled, the FPU retains that state until it is re–enabled or reset. Even
when disabled, it can continue to execute any instructions in its queue.

PIL—Processor Interrupt Level
Bits 8 through 11 identify the processor’s external interrupt priority level. The processor will only accept external
interrupts whose interrupt level is greater than the value in PIL. Bit 11 of the PIL is the MSB and bit 8 is the LSB.

S—Supervisor
Bit 7 determines whether the processor is in supervisor or user mode. Because WRPSR is privileged and only avail-
able in the supervisor mode, supervisor mode can only be entered by a software or hardware trap.

0 = user mode

1 = supervisor mode

PS—Previous Supervisor
Bit 6 holds the value that was in the S bit at the time the most recent trap was taken.

ET—Enable Traps
Bit 5 determines whether traps are enabled. If traps are disabled, all asynchronous traps are ignored. If a synchro-
nous or floating-point/coprocessor trap occurs while traps are disabled, the TSC691E halts and enters the error
mode (see Section 3.8).

 0 = traps disabled

 1 = traps enabled

CWP—Current Window Pointer
Bits 0 through 4 contain a pointer to the currently active register file window. CWP is decremented by traps and the
SAVE instruction, and is incremented by RESTORE and RETT instructions.

The Floating-Point Enabled (EF) bit can be used by the programmer to control FPU use when running multiple
processes. By disabling the EF bit while running a process that doesn’t require the FPU, software would not have to
save and restore the FPU’s registers across context switches. If the FPU is not present, as signaled by the input signal,
FP, the EF bit can be used to provoke floating-point instruction set emulation by generating a floating-point-disabled
trap if execution of a floating-point instruction is attempted. This technique may be used with the coprocessor as well.

If it is necessary for the software to manually disable traps, care must be taken when changing the ET bit from enabled
(ET=1) to disabled (ET=0), since the RDPSR, WRPSR instruction sequence is interruptible. One way to handle that
is to write all interrupt trap handlers so that before they return program control to the supervisor software that was
interrupted, they restore the PSR to the value it had before the interrupt was taken. This will guarantee a correct result
when the interrupted RDPSR, WRPSR sequence continues. The only PSR bit that cannot be restored is the PS bit, which
is overwritten when the trap is taken.

An alternative to the RDPSR-WRPSR sequence is to generate a “trap instruction” trap with a Ticc instruction. A taken
trap automatically sets ET to 0, disabling further traps.

TSC691E

Rev. H (02 Dec. 96)
14 MATRA MHS

.

012331

Window 3
Window 2

Window 1
Window 0

etc.

4567

Future Expansion for Additional Windows

Figure 9. Window Invalid Mask

012312 431

Trap Base Address (TBA)

0 0 0 020 8

Trap Type
(tt)

Figure 10. Trap Base Register

3.3.4.3. Window Invalid Mask Register (WIM)

This register designates which window(s) will cause generation of an underflow or overflow trap when pointed to by
the CWP as the result of a SAVE, RESTORE, or RETT instruction.

Each bit in the WIM register (see Figure 9) corresponds to a window; if a bit is set to 1, the window corresponding
to that bit is marked as invalid. If a SAVE, RESTORE, or RETT instruction would cause the CWP to point to a window
whose WIM bit equals 1, a window overflow (SAVE) or window underflow (RESTORE, RETT) trap is generated. The
trap handler uses the local registers of the invalidated window.

A WIM bit is usually set by the operating system software to identify the boundary between the oldest and newest
window. The overflow or underflow trap prevents previous windows from being overwritten or restores previous
windows from memory. WIM can also be used to mark off register banks for fast context switching (see Section
3.3.1.1.3).

WIM is read by the RDWIM instruction, and written by the WRWIM instruction. Bits corresponding to unimplemented
windows read as zeros and are unaffected by writes.

NOTE: The WIM register is NOT cleared during reset. It must be initialized by software.

3.3.4.4. Trap Base Register (TBR)

When a trap occurs, the program counter (PC) is loaded with the contents of the trap base register. The TBR contains
two fields that together constitute a pointer into the trap table, which in turn contains the trap handler address (see
Figure 10). RDTBR can read the entire register; however, the WRTBR instruction can write only to the Trap Base
Address field. Only hardware can write to the Trap Type field, and bits 0 through 3 are zeros and are unaffected by
a write. The Trap Type field can be directly manipulated using the Ticc instruction. For more information on trap
operation, see Section 3.8.

TBA—Trap Base Address

Bits 12 through 31 contain the most-significant 20 bits of the trap table address. This field applies to all trap types except
reset, which forces address 0. The TBA is software controlled.

tt—Trap Type

Bits 4 through 11 comprise the Trap Type field, an eight-bit value that provides an offset into the trap table based on
the type of trap being taken (see Section 3.8.5.3). This field retains its value until the next trap is taken.

TSC691E

Rev. H (02 Dec. 96)
15MATRA MHS

3.3.4.5. Y Register

The Y register is used by the multiply step instruction (MULScc) to create 64-bit products. This register is read and
written using the non-privileged RDY and WRY instructions.

Table 2. Floating–Point Formats

Single–Precision Floating–Point Format

s = sign (1)
e = biased exponent (8)
f = fraction (23)

normalized number (0 < e < 255): (-1)S * 2e-127 * 1.f
subnormal (e=0): f # 0 (-1)S * 2 - 126 * 0.f
 zero (e=0): f # 0 (-1)S * 0

signaling NaN: f # 0 s=u; e=255 (max); f=.0uuu-uu
(at least one bit must be nonzero)

quiet NaN: f # 0 s=u; e=255 (max); f=.1uuu-uu
infinity: s=0 or 1, depending upon sign;

e=255 (max); f=.00-00 (all zeros)

Double–Precision Floating–Point Format

s = sign (1)
e = biased exponent (11)
f = fraction (52)

normalized number (0 < e < 2047): (-1)S * 2e-1023 * 1.f
subnormal (e=0): f # 0 (-1)S * 2 - 1022 * 0.f
 zero (e=0): f # 0 (-1)S * 0

signaling NaN: f # 0 s=u; e=2047 (max); f=.0uuu-uu
(at least one bit must be nonzero)

quiet NaN: f # 0 s=u; e=2047 (max); f=.1uuu-uu
infinity: s=0 or 1, depending upon sign;

e=2047 (max); f=.00-00 (all zeros)

3.3.5. Data Types

The TSC691E supports ten data types (eleven with extended-precision floating-point, see Section 3.3.5.3). Integer
types include byte, unsigned byte, halfword, unsigned halfword, word, unsigned word, doubleword, and tagged data.
ANSI IEEE 754-1985 floating-point types include single- and double-precision. A byte is 8 bits wide, halfwords are
16 bits, words and single-precision floating-point are 32 bits, doublewords and double-precision floating-point are 64
bits. Table 2 shows the formats for single-precision and double-precision floating–point numbers.

TSC691E

Rev. H (02 Dec. 96)
16 MATRA MHS

031 678

BYTESBYTE

031 78
BYTEUNSIGNED

BYTE

031 141516

HALFWORDSHALFWORD

031

WORDSIGNED
WORD

031 1516

HALFWORDUNSIGNED
HALFWORD

S

031
WORDUNSIGNED

WORD

031
WORD

WORD 0 (MOST SIGNIFICANT WORD)DOUBLE

031
WORD 1 (LEAST SIGNIFICANT WORD)

WORD r(N)

r(N+1)

02223
FRACTIONSINGLE

3031
S EXPONENT

PRECISION FP

EXPONENT

01920

DOUBLE-

3031

LOW-ORDER BITS OF FRACTION
PRECISION FP

HIGH-ORDER BITS OF FRACTION f(N)
f(N+1
)

2

TAGGED
DATA

TAG
1

S

S S S S S S

0 0 0 0 0 0

S S S S S S

0 0 0 0 0 0

.

.

.

.

Figure 11. Processor Data Types

3.3.5.1. Data Organization In Registers

The organization of the ten data types when loaded into registers is shown in Figure 11 .

When moving memory data to or from the registers, byte operands are always loaded to or extracted from the lower
eight bits of a register. On a load, bits 8 through 31 are sign-extended for a byte or zero-extended for an unsigned byte.
Halfwords are always loaded to or extracted from the lower 16 bits of a register. Bits 16 through 31 are sign-extended
for a halfword or zero-extended for an unsigned halfword during a load. All 32 bits of a signed or unsigned word are
loaded from or stored to memory. Stores of byte and halfword data are not sign–extended. Tagged data is handled as
an unsigned word. Doubleword operands load to and store from two contiguous registers, r[n] and r[n+1], with r[n]
containing the most significant word. Figure 12 illustrates the relationship between the way data is stored in memory
and the way it is loaded into registers.

For single-precision, floating-point operands, bit 31 contains the sign bit, bits 23 through 30 contain the eight bits of
exponent, and bits 0 through 22 contain the 23-bit fraction. Double-precision operands require a register pair, with the
upper-order register (r[n]) containing the sign bit, 11-bit exponent, and the high-order bits of the fraction. The
lower-order register (r[n+1]) contains the low-order bits of the fraction. Total fraction size is 52 bits.

When loading doublewords or double-precision operands from memory to the working registers (either r or f), the
destination register must be at an even address or the hardware will force such an address. For example, an attempted
load double to register r[9] would be forced to r[8], so that the most significant word would be loaded in r[8] and the
least significant word in r[9]. A load double to r[0] would result in the loss of the most significant word.

TSC691E

Rev. H (02 Dec. 96)
17MATRA MHS

 Byte Load Example (From Address N+1)

Address N N+1 N+2 N+3

Memory location 31 07815162324

31 07Destination Register Zeroes or Sign Extension

 Byte Store Example (To Address N+2)

Address N N+1 N+2 N+3

Data Bus 31 07815162324

31 07Source Register Don’t Care

Figure 12. Byte Operand Load and Store

Doubleword

Word Word

Halfword Halfword Halfword Halfword

Byte Byte Byte Byte Byte Byte Byte Byte

N N+1 N+2 N+3 N+4 N+5 N+6 N+7

0 0 0 0

077070707070707

15 15 15 15

031031

63 0

Figure 13. Data Organization in Memory

3.3.5.2. Data Organization In Memory

Organization and addressing of data in memory follows the “Big-Endian” convention wherein lower addresses contain
the higher-order bytes (see Figure 13). For a stored word, address N corresponds to the most significant byte of the
word, and address N+3 corresponds to the least significant byte. The address of a halfword, word, or doubleword is
also the address of its most significant byte. A halfword datum must be located on a halfword boundary (address bit
<0> = 0), which is evenly divisible by 2. Similarly, a word must be located on a word boundary (address bits <1:0>
= 0) evenly divisible by 4, and a doubleword must be located on a doubleword boundary (address bits <2:0> = 0) evenly
divisible by 8. Attempting to access misaligned data will generate a memory_address_not_aligned trap.

3.3.5.3. Extended Precision

The SPARC architecture supports another data type, an ANSI/IEEE 754-1985 extended-precision floating-point type
with a width of 128 bits (see Table 3). When loaded to the working registers, extended-precision operands require a
register quadruple (see Figure 14). The upper-order register (r[N]) contains the sign bit, a 15-bit exponent, and a 16-bit
reserved field. The next register (r[N+1]) contains the one-bit integer part and 31 high-order bits of the fraction. The
next register (r[N+2]) holds the 32 low-order bits of the fraction. Total fraction size is 63 bits. The fourth
extended-precision register (r[N+3]) is reserved. As with double-precision operands, when loading an
extended-precision operand, the destination register must be at an even address or the hardware will force an even
address.

The memory address of an extended-precision datum is also the address of its most significant byte (see Figure 15).
An extended-precision datum must be located on an extended-precision boundary (address bits <3:0> = 0), which is
evenly divisible by 16.

TSC691E

Rev. H (02 Dec. 96)
18 MATRA MHS

Table 3. Extended–Precision Floating–Point Format

s = sign (1)
e = biased exponent (15)
j = integer part (1)
f-msb f-lsb = f = fraction (63)

normalized number (0 < e < 32767; j = 1): (-1) s * 2 e-16383 * j.f
subnormal number (e = 0; j = 0) (f # 0): (-1) s * 2 -16383 * j.f
zero (s = 0; e = 0) (f # 0) (j # 0): (-1) s * 0

signaling NaN: f # 0 s = u; e = 32767 (max); j = u;
f = .0 uuu uu (at least one bit
 must be nonzero)

quiet NaN: f # 0 s = u; e = 32767 (max); j = u;
f = .1 uuu uu

infinity: s = 0 or 1, depending upon sign;
e = 32767 (max); j = u;
f = .000 00 (all zeroes)

 SEXTENDED PRECISION FP EXPONENT RESERVEDr[N]

31 30 016 15

RESERVEDr[N + 3]

r[N + 1] J HIGHORDER BITS OF FRACTION

LOWORDER BITS OF FRACTIONr[N + 2]

Figure 14. Extended–Precision Data Organization in Registers

Address

Doubleword

Word Word

N N+4

31031

63 0 Doubleword

Word Word

N+8 N+12

031031

63 0

Extended – Precision Data128 0

0

Figure 15. Extended–Precision Data Organization in Memory

3.4. Instruction Set

This section describes the TSC691E instruction set as defined by the SPARC architecture. Included are subsections
on instruction formats, addressing, instruction types, and an op code summary. A specific document, SPARC V7.0
Instruction Set contains a description of the assembly language syntax and a complete set of instruction definitions.

3.4.1. Instruction Formats

There are only three basic instruction formats plus three subformats. Format 1 is used for the CALL instruction, format
2 for the SETHI [1] and Branch instructions, and format 3 for the remaining integer and floating-point/coprocessor
instructions. Figure 16 shows each format with its fields, bit positions, and the instructions that use that format. All
instructions are one word long and aligned on word boundaries in memory. For most instructions, operands are located
in source registers (represented by rs1 and rs2). The remaining instructions use one source register plus a displacement
or immediate operand contained within the instruction itself.
Note:
1. See chapter 4.2 for application of this instruction in Program Flow Control.

TSC691E

Rev. H (02 Dec. 96)
19MATRA MHS

031 30

opcode 30-Bit Displacement (disp30)

CALL

031 30

(op)

25

Destination (rd)

22

opcode 22-Bit Immediate (imm22)

SETHI

031 30 25 22

22-Bit Displacement (disp22)

BRANCH

a Test Cond.

29

OTHER INTEGER INSTRUCTIONS

31 30 25

Destination (rd)

Destination (rd)

19

Source 2 (rs2)Source 1 (rs1) Alternate Space (asi)0

Source 1 (rs1) 1 13-Bit Immediate (simm13)

FLOATING POINT/COPROCESSOR OPERATIONS

Destination (rd) Source 2 (rs2)Source 1 (rs1)

opcode
(op)

opcode
(op)

opcode
(op)

opcode
(op)

opcode
(op)

(op2)

opcode
(op2)

opcode
(op3)

opcode
(op3)

opcode
(op3)

0514

051314

31 30 25 19

FP Opcode (opf)
CP Opcode (opc)

FORMAT 1

FORMAT 2

FORMAT 3

Figure 16. Instruction Format Summary

a The a (annul) bit is used in branch instructions to control the execution of the delay instruction that imme-
diately follows a control transfer instruction (see Section 3.4.3.4.3).

asi The address space identifier is an eight-bit field used in load/store alternate instructions. See Section
3.4.2.6.

cond This field identifies the condition code used for a branch instruction.

disp22 This field contains the 22-bit displacement value used for PC-relative addressing for a taken branch. It is
sign extended to full-word size when used.

disp30 This field contains the 30-bit displacement used for the PC-relative addressing of a CALL instruction.

i The i (immediate) bit determines whether the second ALU operand (for non-FPop instructions) will be
r[rs2] (i = 0), or a sign-extended simm13 (i = 1).

imm22 This field contains the 22-bit constant used by the SETHI instruction. (See Chapter 4.2 for Program Flow
Control)

op The op field selects the instruction format as shown in Table 4 .
op2 The op2 field (Table 5) contains the instruction opcode for format 2 instructions (op=0).

op3 The 6–bit op3 field contains the instruction opcode for a format 3 instruction (op = 2 or 3).
opc The 9–bit opc identifies a coprocessor–operate (CPop) instruction. The relationship between the opc field

and CPop instructions is described in Section 3.4.3.6.
opf The 9-bit opf identifies a floating-point-operate (FPop) instruction. The relationship between the opf field

and FPop instructions is described in Section 3.4.3.6.

rd The r register (or r register pair) or f register (or f register pair) specified in the rd field serves as the source
during store instructions. For all other instructions, the identified register (register pair) serves as the des-
tination. Note that r[0] as a source supplies the value 0, and as a destination causes the result to be dis-
carded. Note that rd must be a r register for integer instructions and must be a f register for floating–point
instructions.

rs1 The 5-bit rs1 field identifies the register containing the first source operand. The source is a r register for
integer instructions, a f register for floating–point instructions, or a c register for coprocessor instructions.

rs2 The 5-bit rs2 field identifies the register containing the second source operand. The source is a r register for
integer instructions, a f register for floating–point instructions, or a c register for coprocessor instructions.

TSC691E

Rev. H (02 Dec. 96)
20 MATRA MHS

simm13 This field holds the 13-bit immediate value used as the second ALU operand when i = 1. It is sign-extended
to full-word size when used.

Table 4. op field Coding

op Value Instruction

00
01

10 or 11

Bicc, FBfcc, CBccc, SETHI
Call
Other

Table 5. op2 Field Coding

op2 Value Instruction

000
010
100
110
111

Unimplemented
Bicc
SETHI
FBfcc
CBccc

Unused (reserved) bit patterns which are used in the op, op2, op3, or i (wrong bit used) fields of instructions will cause
an illegal_instruction trap. Fields that are not used for a particular instruction are ignored and so will not cause a trap,
regardless of the bit pattern placed in that field. Unused or reserved bit patterns used in the opf or opc fields of a
floating–point or coprocessor instruction cause an fp exception or a cp exception.

3.4.2. Addressing

Because it uses a load/store architecture, the TSC691E needs only four address modes. Memory address generation
is done only for load and store instructions and is byte oriented. Program counter-relative addressing is generated only
for calls and branches and is word-boundary oriented because it is addressing instructions. Register-indirect addressing
applies to jumps, returns, and traps and is also word-boundary oriented. Address generation is illustrated in Figure 17 .

3.4.2.1. Two Register

Two-register addressing uses the rs1 and rs2 fields (instruction format 3) to specify two source registers whose 32-bit
contents are added together to create a memory address. This is a load/store (or register-indirect) addressing mode.

3.4.2.2. Register Plus 13-Bit Immediate

This addressing mode is used where an immediate value is required as one of the sources. The address is generated
by adding the 32-bit source register specified by rs1 (format 3) to a 13-bit, sign-extended immediate value contained
in the instruction. This is a load/store (or register-indirect) addressing mode.

3.4.2.3. 13-Bit Immediate

Immediate addressing is a special case of register-plus-immediate addressing. In this case, the rs1-specified register
is r[0] (whose value is 0), which means the address is generated using only the 13-bit immediate value. Use of this
special case allows absolute addressing of the upper and lower 4 kbytes of a memory (or instruction) space with the
13-bit immediate value. Immediate addressing is the simplest method of addressing because no registers need be set
up beforehand.

TSC691E

Rev. H (02 Dec. 96)
21MATRA MHS

+ Memory Address

+ Memory Address

Memory Address

+

+

Program Counter

Program Counter

031

31

31

31

31

31

31

31

31

0

0

0

0

0

0

0

024

13

13

BRANCH

CALL

LOAD/STORE(JMPL, RETT)

0030-Bit Displacement

Program Counter + 4

Sign Extension 22-Bit Displacement

Sign Extension

Sign Extension

13-Bit Immediate

13-Bit Immediate

Register Source 1

Register Source 1

Register Source 2

Program Counter + 4

00

2

(Program Counter)

(Program Counter)

(Program Counter)

1

1

Figure 17. Address Generation

3.4.2.4. CALL

Address generation for the CALL instruction is program counter-relative, that is, the target address is based on the
program counter. Because the TSC691E is a delayed-control-transfer machine (see Section 3.4.3.4), before the address
is calculated, the PC is replaced by the nPC, so the calculation is actually done with PC + 4 (see Figure 17).

An address is generated by adding this PC + 4 value to the 30-bit word displacement contained in the CALL instruction.
The displacement is formed by appending two zeros to the 30-bit value from the instruction. This allows control
transfers to any word-boundary location in the virtual memory instruction space. The result of the address generation
becomes the new nPC.

3.4.2.5. Branch

Branch instructions also use PC-relative addressing, but in this case, the value added to PC + 4 is a sign-extended 22-bit
word displacement. Again, the displacement is formed by appending two zeros to the 22-bit value contained in the
branch instruction and then sign extending out to 32 bits. This allows a branching range of 8 Mbytes on word
boundaries. The generated address becomes the new nPC.

TSC691E

Rev. H (02 Dec. 96)
22 MATRA MHS

Table 6. ASI Assignments

TSC691E Address Space Identifier (ASI) Address Space

00001000 (08 H) User Instruction

00001010 (0A H) User Data

00001001 (09 H) Supervisor Instruction

00001011 (0B H) Supervisor Data

3.4.2.6. ASI

In addition to the 32 bits of address output by the processor, an additional eight bits of Address Space Identifier (ASI)
is also sent to system memory during a memory access. These ASI bits control access to 256 32-bit address spaces,
which may or may not overlap depending upon the designer’s implementation. The SPARC architecture defines four
ASI values for user instructions, user data, supervisor instructions, and supervisor data (see Table 6). These four ASI
values all map to the same 32–bit address space, and are used to implement access–level protection. ASI values are
commonly used to identify user/supervisor accesses, to identify special protected memory accesses such as boot
PROM, and to access resources such as TSC693E control registers, TLB entries, cache tag entries, etc...

The ASI value is supplied by the TSC691E for each instruction fetch and each data access encountered. The TSC690
family assigns a number of these ASI values to the TSC693E and a number are reserved for future assignment.
Nevertheless, nearly 80 are left unassigned for use by the system.

3.4.3. Instruction Types

TSC691E instructions fall into six functional categories: load/store, arithmetic/logical/shift, control transfer,
read/write control register, floating-point-operate/coprocessor-operate, and miscellaneous. For complete information
on each instruction, see Chapter 6 of the TEMIC SPARC RISC USER’S GUIDE.

3.4.3.1. Load/Store

Load and store instructions (see Table 7) move bytes, halfwords, words, and doublewords between the
byte-addressable main memory and a register in either the IU, FPU, or CP. They are the only instructions that access
data memory. For floating-point and coprocessor loads and stores, the TSC691E generates the memory address and
the FPU or CP receives or supplies the data.

The TSC691E implements a hardware-interlocked delay when an instruction immediately following a load tries to read
the register being loaded. The data will be supplied, but only after a one-cycle delay.

Load and store instructions use two-register, register-plus-immediate, and immediate addressing modes. In addition
to the 32-bit address, the TSC691E also generates an eight-bit address space identifier.

3.4.3.1.1. ASI

The Address Space Identifier (ASI) is used by the external system to ascertain which of the 256 available address spaces
to access for the load or store being executed. Access to these alternate spaces can be gained directly by using the “load
from alternate space” and “store to alternate space” instructions. These instructions use two-register addressing and
the asi field in instruction format 3. The address space specified in the asi field overrides the automatic ASI assignment
made by the processor, giving access to such resources as system control registers that are invisible to the user. Because
the ASI is intended for use by the system operating software, the alternate space instructions are privileged and can
only be executed in supervisor mode.

TSC691E

Rev. H (02 Dec. 96)
23MATRA MHS

Table 7. Load/Store Instructions

Name Operation Cycles

LDSB (LDSBA*) Load Signed Byte (from Alternate Space) 2

LDSH (LDSHA*) Load Signed Halfword (from Alternate Space) 2

LDUB (LDUBA*) Load Unsigned Byte (from Alternate Space) 2

LDUH (LDUHA*) Load Unsigned Halfword (from Alternate Space) 2

LD (LDA*) Load Word (from Alternate Space) 2

LDD (LDDA*) Load Doubleword (from Alternate Space) 3

LDF Load Floating–Point 2

LDDF Load Double Floating–Point 3

LDFSR Load Floating–Point Status 2

LDC Load Coprocessor 2

LDDC Load Double Coprocessor 3

LDCSR Load Coprocessor Status Register 2

STB (STBA*) Store Byte (into Alternate Space) 3

STH (STHA*) Store Halfword (into Alternate Space) 3

ST (STA*) Store Word (into Alternate Space) 3

STD (STDA*) Store Doubleword (into Alternate Space) 4

STF Store Floating–Point 3

STDF Store Double Floating–Point 4

STFSR Store Floating–Point Status Register 3

STDFQ* Store Double Floating–Point Queue 4

STC Store Coprocessor 3

STDC Store Double Coprocessor 4

STCSR Store Coprocessor State Register 3

STDCQ* Store Double Coprocessor Queue 4

LDSTUB (LDSTUBA*) Atomic Load–Store Unsigned Byte (in Alternate Space) 4

SWAP (SWAPA*) Swap r Register with Memory (in Alternate Space) 4

* denotes supervisor instruction

3.4.3.1.2. Multiprocessing Instructions

In addition to alternate address spaces, the TSC691E provides two uninterruptible instructions, SWAP and LDSTUB
(atomic load and store unsigned byte), to support tightly coupled multiprocessing.

The SWAP instruction exchanges the contents of an r register with a word from a memory location without allowing
asynchronous traps or other memory accesses during the exchange.

The LDSTUB instruction reads a byte from memory into an r register and then overwrites the memory byte to all ones.
As with SWAP, LDSTUB prevents asynchronous traps and other memory accesses during its execution. LDSTUB is
used to construct semaphores.

TSC691E

Rev. H (02 Dec. 96)
24 MATRA MHS

Multiple processors attempting to simultaneously execute SWAP or LDSTUB to the same memory location are
guaranteed that the competing instructions will execute in serial order.

3.4.3.2. Arithmetic/Logical/Shift

This class of instructions performs a computation on two source operands and writes the result into a destination register
(r[rd]). One of the source operands is always a register, r[rs1], and the other depends on the state of the instruction’s
“i” (immediate) bit. If i = 0, the second operand is register r[rs2]. If i = 1, the operand is the 13-bit, sign-extended
constant in the instruction’s simm13 field. SETHI [1] is a special case because it is a single–operand instruction.

Table 8. Arithmetic/Logical/Shift Instructions

Name Operation Cycles

ADD (ADDcc) Add (and modify icc) 1

ADDX (ADDXcc) Add with Carry (and modify icc) 1

TADDcc (TADDccTV) Tagged Add and modify icc (and Trap on oVerflow) 1

SUB (SUBcc) Subtract (and modify icc) 1

SUBX (SUBXcc) Subtract with Carry (and modify icc) 1

TSUBcc (TSUBccTV) Tagged Subtract and modify icc (and Trap on oVerflow) 1

MULScc Multiply Step and modify icc 1

AND (ANDcc) And (and modify icc) 1

ANDN (ANDNcc) And Not (and modify icc) 1

OR (ORcc) Inclusive Or (and modify icc) 1

ORN (ORNcc) Inclusive Or Not (and modify icc) 1

XOR (XORcc) Exclusive Or (and modify icc) 1

XNOR (XNORcc) Exclusive Nor (and modify icc) 1

SLL Shift Left Logical 1

SRL Shift Right Logical 1

SRA Shift Right Arithmetic 1

SETHI [1] Set High 22 Bits of r Register 1

For most arithmetic and logical instructions, there is both a version that modifies the integer condition codes and one
that doesn’t (see Table 8).

Shift instructions shift left or right by a distance specified in either a register or an immediate value in the instruction.

The multiply step instruction, MULScc, is used to generate the signed or unsigned 64-bit product of two 32-bit integers.
For more information on MULScc, refer to its definition in SPARC V7.0 Instruction Set.

Note 1 : See chapter 4.2 for application of this instruction in Program Flow Control.

3.4.3.2.1. Register r[0]

Because register r[0] reads as a 0 and discards any result written to it as a destination, it can be used with some
instructions to create syntactically familiar pseudoinstructions. For example, an integer COMPARE instruction is
created using the SUBcc (subtract and set condition codes) with r[0] as its destination [1]. A TEST instruction uses
SUBcc with r[0] as both the destination and one of the sources. A register-to-register MOVE is accomplished using
an ADD or OR instruction with r[0] as one of the source registers. A negation is done with SUB and r[0] as one source.
If the assembler being used supports pseudoinstructions, it translates the pseudoinstruction into the equivalent
instruction in the native assembly language. Refer to your assembly language manual for details.
Note:
Refer to Program Flow Control for more information. (see 4.2, page 114)

TSC691E

Rev. H (02 Dec. 96)
25MATRA MHS

3.4.3.2.2. SETHI

SETHI is a special instruction that can be combined with another arithmetic instruction (such as an OR immediate)
to construct a 32-bit constant. SETHI loads a 22-bit immediate value into the upper 22 bits of the destination register
and clears the lower 10 bits. The arithmetic immediate instruction which follows is used to load the lower 10 bits. Note
that the 13-bit immediate value gives a 3 bit overlap with the 22-bit SETHI value. SETHI can also be combined with
a load or store instruction to construct a 32-bit memory address.

031
WORD

2 1
0 0TAGGED

DATA

031
WORD

2 1
x xOTHER At least one bit

must be non–zero.

Figure 18. Tagged Data Example

SETHI can also be used in Program Flow Control to compare the precomputed checksum given as a special SETHI
instruction (SETHI 0,%SUM) with the checksum. This special SETHI instruction can be inserted after every branch,
call, and before every branch-in point.

3.4.3.2.3. Tagged Arithmetic

The tagged arithmetic instructions are useful for languages that employ tags, such as LISP, Smalltalk, or Prolog. For
efficient support of such languages, the SPARC architecture defines tagged data as a data type. Tagged data are assumed
to be 30 bits wide with the tag bits (the least two significant bits) set to zero (see Figure 18). A tagged add (TADDcc)
or subtract (TSUBcc) will set the overflow bit if either of the operands has a nonzero tag or if a normal overflow occurs.

Tagged add or subtract instructions are normally followed by a conditional branch. If the overflow bit is set during a
tagged add or subtract operation, control is commonly transferred to a routine that checks the operand types. In order
to expedite this software construct, the SPARC architecture provides two trap on overflow instructions: TADDccTV
and TSUBccTV, which automatically trap if the overflow bit is set during their execution.

3.4.3.3. Control Transfer

Control transfer instructions are those that change the values of the PC and nPC. These include conditional branches
(Bicc, FBfcc, CBccc), a call (CALL), a jump (JMPL), conditional traps (Ticc), and a return from trap (RETT). Also
included are the SAVE and RESTORE instructions, which don’t transfer control but are used to save or restore windows
during a call to a new procedure or a return to a calling procedure (see Table 9).

In the TSC691E, control transfer is usually delayed so that the instruction immediately following the control-transfer
instruction (called the delay instruction) can be executed before control transfers to the target address. The delay
instruction is always fetched. However, the annul or a bit in conditional branch instructions can cause the instruction
to be annulled (i.e., prevent execution) if the branch is not taken (or always annulled in the case of BA, FBA, and CBA).
If a branch is taken, the delay instruction is always executed (except for BA, FBA, and CBA, see Section 3.4.3.4.3).
Table 10 shows the characteristics of each control transfer type.
Program Counter Relative

PC-relative addressing computes the target address by adding a displacement to the program counter. See Section
3.4.2.

Register-Indirect

Register-indirect addressing computes the target address as either r[rs1] + r[rs2] if i = 0, or r[rs1] + simm13 if i = 1.
See Section 3.4.2.

Delayed

A control-transfer instruction is delayed if it transfers control to the target address after a one-instruction delay. See
Section 3.4.3.4.

Annul Bit

In an instruction with an annul bit, the delay instruction that follows may be annulled. See Section 3.4.3.4.3.

TSC691E

Rev. H (02 Dec. 96)
26 MATRA MHS

3.4.3.3.1. Branching and the Condition Codes

The condition code bits in the icc, fcc, and ccc fields, are located (respectively) in the PSR (Processor State Register),
FSR (Floating-point State Register), and CSR (Coprocessor State Register). The integer condition code bits are
modified by arithmetic and logical instructions whose names end with the letters cc, or they may be written directly
with WRPSR. The floating-point condition codes are modified by the floating-point compare instructions, FCMP and
FCMPE, or directly with the STFSR instruction. Modification of the coprocessor condition codes is done directly with
STCSR or by operations defined by the particular coprocessor implementation.

Except for BA (Branch Always) and BN (Branch Never), a Bicc instruction evaluates the integer condition codes as
specified in the cond field. If the tested condition evaluates as true, the branch is taken, causing a PC-relative delayed
transfer to the address [(PC + 4) + sign extnd(disp22)]. If the evaluation result is false, the branch is not taken. For BA
and BN, there is no evaluation; the result is simply forced to true for BA and false for BN.

Table 9. Control Transfer Instructions

Name Operation Cycles

SAVE SAVE caller’s window 1

RESTORE RESTORE caller’s window 1

Bicc Branch on integer condition codes 1*

FBfcc Branch on floating–point condition codes 1*

CBccc Branch on coprocessor condition codes 1*

CALL Call 1*

JMPL JuMP and Link 2*

RETT RETurn from Trap 2*

Ticc Trap on integer condition codes 1 (4 if taken)

* assumes delay slot is filled with a useful instruction

Table 10. Control Transfer Instruction Characteristics

Instructions Addressing Mode Delayed Annul Bit

Conditional Branch Program Counter Relative yes yes

Call Program Counter Relative yes yes

Jump Register Indirect yes no

Return Register Indirect yes no

Trap Register Indirect no no

If the branch is not taken, then the annul bit is checked. If the “a” bit is set, the delay instruction is annulled. If “a” is
not set, the delay instruction is executed. If the branch is taken, the annul bit is ignored and the delay instruction is
executed. For more information on delayed control transfer and the annul bit, see Section 3.4.3.4.

BN, of course, never branches, and therefore executes like a NOP (but is not recommended as a NOP instruction).
However, as far as the annul bit is concerned, BN acts like a normal branch instruction, annulling the delay instruction
if a = 1 and executing it if a = 0.

BA, on the other hand, always branches, so the annul bit would normally be ignored. But for BA, FBA, and CBA, the
effect of the annul bit is changed. See Section 3.4.3.4.3 for details.

As illustrated in Table 11 , Bicc and Ticc instructions test for the same conditions and use the same cond field codes
during their evaluations.

An FBfcc instruction operates in the same way as a Bicc, except it tests the FCC<1:0> signals output by the
floating–point unit (see Table 12). The FCC<1:0> signals are floating–point condition codes which are set by

TSC691E

Rev. H (02 Dec. 96)
27MATRA MHS

executing a floating–point compare instruction. A CBccc instruction behaves in the same manner as a FBfcc, except
it tests the CCC<1:0> signals supplied by the coprocessor (see Table 13). Both FBN and CBN behave in the same way
as BN.

3.4.3.3.2. Trap Instructions

The “Trap on integer condition codes” (Ticc) instruction evaluates the condition codes specified by its cond (condition)
field. If the result is true, a trap is immediately taken (no delay instruction). If the condition codes evaluate to false,
Ticc executes as a NOP.

Once the Ticc is taken, it identifies which software trap type caused it by writing its trap number + 128 (the offset for
trap instructions) into the tt field of the Trap Base Register (TBR), as illustrated in Figure 19 . The trap number is the
least significant seven bits of either “r[rs1] + r[rs2]” if the i field is zero, or “r[rs1] + sign extnd(simm13)” if the i field
is one. The processor then disables traps (ET=0), saves the state of S into PS, decrements the CWP, saves PC and nPC
into the locals r[17] and r[18] (respectively) of the new window, enters supervisor mode (S=1), and writes the trap base
register to the PC and TBR + 4 to nPC.

Table 11. Bicc and Ticc Condition Codes

Cond. Test Cond. Test

0000
0001
0010
0011
0100
0101
0110
0111

Never
Equal to
Less than or equal
Less than
Less than or equal to, unsigned
Carry set (less than, unsigned)
Negative
Overflow set

1000
1001
1010
1011
1100
1101
1110
1111

Always
Not equal to
Greater than
Greater than or equal to
Greater than, unsigned
Carry clear (greater than or equal to, unsigned)
Positive
Overflow clear

Table 12. FBfcc Condition Codes

Cond. Test Cond. Test

0000
0001
0010
0011
0100
0101
0110
0111

Never
Not equal to
Less than or greater than
Unordered or less than
Less than
Unordered or greater than
Greater than
Unordered

1000
1001
1010
1011
1100
1101
1110
1111

Always
Equal to
Unordered or equal to
Greater than or equal to
Unordered or greater than or equal to
Less than or equal to
Unordered or less than or equal to
Ordered

Table 13. CBccc Condition Codes

Opcode Cond. CCC[1:0] Test Opcode Cond. CCC[1:0] Test

CBN
CB123
CB12
CB13
CB1
CB23
CB2
CB3

0000
0001
0010
0011
0100
0101
0110
0111

Never
1 or 2 or 3
1 or 2
1 or 3
1
2 or 3
2
3

CBA
CB0
CB03
CB02
CB023
CB01
CB013
CB012

1000
1001
1010
1011
1100
1101
1110
1111

Always
0
0 or 3
0 or 2
0 or 2 or 3
0 or 1
0 or 1 or 3
0 or 1 or 2

TSC691E

Rev. H (02 Dec. 96)
28 MATRA MHS

+

31

31

0

013

Sign Extension 13-Bit Immediate

Register Source 1

tt field of Trap Base Register

7–Bit operand

+

31

31

0

0

Register Source 1

tt field of Trap Base Register

7–Bit operand

Register Source 2 7–Bit operand

+

+

128

128

<6:0>

<6:0>

<7:0>

<7:0>

12 431

Trap Base Address (TBA) Trap Type (tt) 0 0 0 0Trap Base Register

i bit of Ticc instruction = 0

i bit of Ticc instruction = 1

11 3 0

67

6

6

7

7

Figure 19. Ticc Trap Addr ess Generation

Ticc can be used to implement kernel calls, breakpointing, and tracing. It can also be used for run-time checks, such
as out-of-range array indices, integer overflow, etc.

Return from a trap is accomplished using the delayed control transfer couple, JMPL, RETT. RETT first increments
the CWP by one, calculates the return address (using register-indirect addressing), and then checks for a number of
trap conditions before it allows a return. An illegal_instruction trap is generated if traps are enabled (ET=1) when RETT
is executed. If ET=0, RETT checks for other trap conditions and will generate a reset trap and enter error mode for
the following conditions: S=0, the new CWP would cause a window underflow, or the return address is not word
aligned. If none of these conditions exist, RETT enables traps (ET=1), restores the previous supervisor state to the S
bit, and writes the target address into the nPC.

3.4.3.3.3. Calls and Returns

Calling a subroutine or procedure can be done in one of two ways. A CALL instruction computes its target address
using a PC-relative displacement of 30-bits. The JuMP and Link (JMPL) instruction uses register-indirect addressing
(the sum of two registers or the sum of a register and a 13-bit signed immediate value) to compute its target address.
Either instruction allows control transfer to any arbitrary instruction address.

Control transfer to a procedure that requires its own register window is done with either a CALL or JMPL instruction
and a SAVE instruction. A procedure that does not need a new window, a so-called “leaf” routine, is invoked with only
the CALL or JMPL.

The CALL instruction stores its return address (the current PC) into outs register r[15]. When the new window is
activated, this becomes ins register r[31] (see Figure 5). The JMPL instruction stores its return address (the contents
of PC, which is the Link) into the r register specified in the destination field, rd.

The primary purpose of the SAVE instruction is to “save” the caller’s window by decrementing the Current Window
Pointer (CWP) by one, thereby activating the next window and making the current window into the previous window.
SAVE also performs a normal ADD, using source registers from the caller’s window, but writing the result into a
destination register in the new window. This can be used to set a new stack pointer from the previous one (see Section
3.3.1.1.1).

Return from a procedure requiring its own window is done with a RESTORE and a JMPL instruction. A leaf procedure
returns by executing a JMPL only. The target address for the return is normally that of the instruction following the
CALL’s or JMPL’s delay instruction; that is, the return address + 8. The RESTORE instruction restores the caller’s
window by incrementing the CWP by one, causing the previous window to become the current window. As with SAVE,
RESTORE performs an ADD using source registers from the called (new) window and writing the result into the calling
(previous) window.

Both SAVE and RESTORE compare the new CWP against the Window Invalid Mask (WIM) to check for window
overflow or underflow. They may also be used to atomically change the CWP while establishing a new memory stack
pointer in an r register.

TSC691E

Rev. H (02 Dec. 96)
29MATRA MHS

3.4.3.4. Delayed Control Transfer

Traditional architectures usually execute the target instruction of a control transfer immediately after the control
transfer instruction. However, in a pipelined RISC architecture, this type of transfer would require flushing the
instruction that follows the control transfer instruction. To avoid creating a hole or bubble in the pipeline, the TSC691E
delays execution of the target instruction until the instruction following the control transfer instruction is executed. The
instruction in this delay slot is called the delay instruction.

Table 14. Delayed Control Transfer Instruction Example

PC nPC Instruction

8
12
16

40

12
16
40

44

Non-control transfer
Control transfer (target = 40)
Non-control transfer (delay instruction)
(Transfers control to 40)
...

Table 15. Effect of Annul Bit Reset (a=0)

PC nPC Instruction Action

8
12
16
20

12
16
20
24

Non-control transfer
Bicc (a = 0) 40
Delay slot instruction
...

Executed
Not Taken
Executed
Executed

Table 16. Effect of Annul Bit Reset (a=1)

PC nPC Instruction Action

8
12
16
20

12
16
20
24

Non-control transfer
Bicc (a = 1) 40
Delay slot instruction (annuled)

Executed
Not Taken

Not Executed
Executed

3.4.3.4.1. PC and nPC

The Program Counter (PC) contains the address of the instruction currently being executed by the TSC691E, and the
next Program Counter (nPC) holds the address (PC + 4) of the next instruction to be executed (assuming a control
transfer or a trap does not occur).

Most instructions end by copying the contents of the nPC into the PC and then they either increment nPC by four or
write a computed control transfer target address into nPC. At this point, the PC points to the instruction that is about
to begin execution and the nPC points to the instruction that will be executed after that, i.e. the second instruction after
the currently executing instruction. It is the existence of the nPC that allows the execution of the delay instruction
before transfer of control to the target instruction.

3.4.3.4.2. Delay Instruction

The instruction pointed to by the nPC when the PC is pointing to a delayed-control-transfer instruction is called the
delay instruction. Normally, this is the next sequential instruction in the code stream. However, if the instruction that
preceded the delayed control transfer was itself a delayed control transfer, the target of the preceding control transfer
becomes the delay instruction (that’s where the nPC will point). For more on delayed control transfer couples, see
Section 3.4.3.4.4.

Table 14 shows the order of execution for a simple (not back-to-back) delayed control transfer. The order of execution
is 8, 12, 16, 40. If the delayed-control-transfer instruction were not taken, the order would be 8, 12, 16, 20.

3.4.3.4.3. Annul Bit

The a (annul) bit is only available on conditional branch instructions (Bicc, FBfcc, and CBccc), where it changes the
behavior of the delay instruction. If a is set on a conditional branch instruction (except BA, FBA, and CBA) and the
branch is not taken, the delay instruction is annulled (not executed). An annulled instruction has no effect on the state
of the TSC691E nor can a trap occur during an annulled instruction. If the branch is taken, the a bit is ignored and the
delay instruction is executed. Table 15 and Table 16 show the effect of the annul bit when it is reset or set.

TSC691E

Rev. H (02 Dec. 96)
30 MATRA MHS

The “branch always” instructions (BA, FBA, and CBA) are a special case. If the a bit is set in these instructions, the
delay instruction is annulled, even though the branch is taken. Effectively, this gives a “traditional” non-delayed
branch. When a = 0 in a “branch always” instruction, it behaves the same as any other conditional branch; the delay
instruction is executed. Figure 20 displays the effect the a bit has on any branch for either the set or reset state.
Table 17 summarizes the effect the annul bit has on the execution of delay instructions.

Table 17. Effect of Annul Bit on Delay Instruction

a bit Type of branch Delay instruction executed?

a = 1 Always No

Conditional, taken Yes

Conditional, not taken No

a = 0 Always Yes

Conditional, taken Yes

Conditional, not taken Yes

Code

Control Transfer Inst.

Delay Inst.

Code

Control Transfer Inst.

Delay Inst.

ANNUL = 0 ANNUL = 1

Untaken
Conditional

Untaken
Conditional

Taken
Conditional

Branch
Always

Taken
Conditional

Figure 20. Delayed Control Transfer

3.4.3.4.4. Delayed Control Transfer Couples

The occurrence of two back-to-back, delayed control transfer instructions is called a delayed control transfer couple,
which the processor handles differently from a simple control transfer. An instruction sequence containing a delayed
control transfer couple is shown in Table 18 , and the order of execution for the six different cases of back-to-back,
delayed control transfer instructions is shown in Table 19 .

The delay slot instruction for a delayed control transfer instruction is the instruction fetched after the delayed control
transfer instruction. For most cases, this instruction is located immediately in the code listing after the delayed control
transfer instruction. However, in the case of a delayed control transfer couple, the target instruction of the first delayed
control transfer instruction is the delay slot instruction for the second delayed control transfer instruction, since that
target instruction is the next instruction to be fetched. The delay slot instruction for the second delayed control transfer
instruction is the next instruction loaded into the instruction pipeline after the second delayed control transfer
instruction.

In the following tables, “delayed control transfer instruction” is abbreviated to “DCTI”. A “Non-DCTI” may be either
a non-control transfer instruction or a control transfer that is not delayed (i.e., a Ticc). Where the annul bit is not
indicated, it may be either 0 or 1.

TSC691E

Rev. H (02 Dec. 96)
31MATRA MHS

Case 1 of Table 19 includes the “JMPL, RETT” couple, which is the normal method of returning from a trap handler.
The JMPL, RETT couple ensures correct values of PC and nPC are restored upon exiting the trap routine, even in the
case of a trap caused by a delay slot instruction (see Section 3.4.3.4.2). The case of a trap caused by a delay slot
instruction is one where the nPC will not be PC + 4, thus requiring both PC and nPC to be restored. The JMPL, RETT
couple allows the choice of re–executing the trapped instruction or executing the instruction following the trap
occurrence. Refer to the RETT entry in SPARC V7.0 Instruction Set for further information.

Table 18. Delayed Control Transfer Couple Instruction Sequence

Address Instruction Target

8:
12:
16:
20:
24:
...
40:
44:
...
60:
64:
...

Non DCTI
DCTI
DCTI
Non DCTI
...
...
Non DCTI
...
...
Non DCTI
...
...

40
60

Table 19. Execution of Delayed Control Transfer Couples

Case DCTI at Location 12 DCTI at Location 16 Order of Execution

1
2
3
4
5
6

DCTI Unconditional
DCTI Unconditional
DCTI Unconditional
DCTI Unconditional
B*A(a = 1)
B*cc

DCTI Taken
B*cc(a = 0) Untaken
B*cc(a = 1) Untaken
B*A(a = 1)
any CTI
DCTI

12, 16, 40, 60, 64, ...
12, 16, 40, 44, ...
12, 16, 44, 48, ...(40 annuled)
12, 16, 60, 64, ...(40 annuled)
12, 40, 44, ...(40 annuled)
Not Supported

B*A BA, FBA, or CBA.
B*cc Bicc, FBicc, or CBicc (except B*A).
DCTI Uncond. CALL, JMPL, RETT, or B*A(a=0).
DCTI Taken CALL, JMPL, RETT, B*cc taken, or B*A(a=0).

Cases 1-5 described in Table 19 are illustrated in Figure 21 . In case 1, the first DCTI is fetched at address 12 and the
target address is calculated while the delay slot instruction is fetched. The delay slot instruction for the first DCTI
(located at address 16) is another DCTI, which also has a delay slot. The target address of the first DCTI has been
calculated by the time the first delay slot instruction has been fetched, and the target instruction is fetched at address
40. The target instruction is the instruction located in the instruction pipeline after the second DCTI, and therefore it
is the delay slot instruction for the second DCTI. The target instruction for the second DCTI (address 60) is fetched
after the delay slot instruction for the second DCTI (which is also the target address for the first DCTI) has been fetched.

Case 2 differs from case 1 in that the second DCTI is conditional, and is not taken. In case 2, the instruction at address
40 (target for DCTI #1) is the delay slot instruction for the second DCTI. Since the second DCTI does not cause a
branch, the instruction fetch continues to address 44.

Case 3 is an interesting case in which the target instruction of the first DCTI is annulled by the second DCTI. This causes
the instruction at address 40 to be annulled. Since the second DCTI is an untaken conditional branch, instruction fetch
continues after the annulled target instruction (address 44).

Case 4 illustrates a DCTI followed by a branch always instruction with the annul bit set. This causes the target
instruction of the first DCTI (address 40) to be annulled, and program control is transferred to the target of the second
DCTI at address 60.

Case 5 illustrates the case where the second DCTI is annulled by the annul bit of the first DCTI. The second DCTI,
since it is annulled, has no effect on instruction fetch. This case is identical to the case of any other annulled delay slot
instruction.

When the first instruction of a delayed control transfer couple is a conditional branch, control transfer is undefined (case
6). If such a couple is executed, the location where execution continues is within the same address space but is otherwise
undefined. Execution of this sequence does not change any other aspect of the processor state.

TSC691E

Rev. H (02 Dec.96)
32 MATRA MHS

ÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏ

Delay Slot #2

ÏÏÏÏÏÏ
ÏÏÏÏÏÏ
ÏÏÏÏÏÏ

Delay Slot #2

DCT Inst. 1

DCT Inst. 2

DCT #1 Target

Next Inst.

DCT #2 Target

Inst.
Address

12H

40H

60H

64H

Case 1

Delay Slot #1

Delay Slot #2

Delay Slot #1

Delay Slot #2

DCT Inst. 1

B*cc (untaken)
a = 0

DCT #1 Target

Next Inst.

Inst.
Address

12H

16H

40H

Case 2

ÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏ

Delay Slot #1

Delay Slot #2

DCT Inst. 1

Inst.
Address

12H

16H

40H

Case 3

Delay Slot #1

DCT Inst. 1

DCT #1 Target

Next Inst.

DCT #2 Target

Inst.
Address

12H

16H

40H

60H

64H

Case 4

B*A (a=1)

DCT Inst. 2

DCT #1 Target

Next Inst.

Inst.
Address

12H

16H

40H

44H

Case 5

44H

B*cc (untaken)
a = 1

DCT #1 Target

annulled by DCTI #2

Next Inst.44H

annulled by DCTI #1

annulled by DCTI #2

B*A (a=1)

16H

Figure 21. Delayed Control Transfer Couples

TSC691E

Rev. H (02 Dec.96)
33MATRA MHS

Table 20. Read/Write Control Register Instructions

Name Operation Cycles

RDY Read Y Register 1

RDPSR* Read Processor State Register 1

RDWIM* Read Window Invalid Mask 1

RDTBR* Read Trap Base Register 1

WRY Write Y Register 1

WRPSR* Write Processor State Register 1

WRWIM* Write Window Invalid Mask 1

WRTBR* Write Trap Base Register 1

* denotes supervisor instruction

Table 21. Floating–Point–Operate and Coprocessor–Operate Instructions

Name Operation Cycles

FPop Floating–Point Operations 1 to launch

FPop Coprocessor Operations 1 to launch

Table 22. Miscellaneous Instructions

Name Operation Cycles

UNIMP Unimplemented Instruction 1

IFLUSH Instruction Cache Flush 1

3.4.3.5. Read/Write Control Registers

This class of instruction reads or writes the contents of the various control registers (see Table 20). The source (read)
or destination (write) is implied by the instruction name. Read/write instructions are provided for the PSR, WIM, TBR,
FSR, CSR, and the Y register. Reads and writes to the PSR, WIM, and TBR are privileged and are available in
supervisor mode only.

3.4.3.6. Floating-Point-Operate and Coprocessor-Operate

Floating-point calculations are accomplished with floating-point-operate instructions (FPops), which are
register-to-register instructions that compute some result as a function of one or two source operands (see Table 21).
The result is always placed in a destination register (i.e., source operands are not overwritten). The source and
destination registers are f registers from the FPU’s register file. If no FPU is present, or if the EF bit of the PSR is not
set, executing a floating–point instruction will generate a FP disabled trap.

Coprocessor-operate instructions (FPops) are executed by the attached coprocessor. Coprocessor instructions use the
c registers located in the coprocessor’s register file as source and destination registers. If there is no attached
coprocessor, attempted execution of a coprocessor instruction generates a FP disabled trap.

Floating-point and coprocessor load/store instructions are not operate instructions; they fall under the TSC691E’s load
/store instruction category (see Section 3.4.3.1).

Except for op and op3, which specify the particular floating-point-operate or coprocessor-operate instruction to be
executed, the instruction fields of an FPop or CPop are interpreted by the FPU or coprocessor. Floating-point-operate
instructions execute concurrently with TSC691E instructions. FPops can also execute concurrently with both
TSC691E and FPop instructions if they are designed to do so.

TSC691E

Rev. H (02 Dec.96)
34 MATRA MHS

Because the TSC691E and FPU can execute instructions concurrently, when a floating-point exception occurs, the PC
DOEs contain the address of an FPop instruction, but not the one that caused the exception. However, the front entry
of the floating-point queue contains the offending instruction and its address.

If the coprocessor executes instructions concurrently with the TSC691E, the architecture will support a coprocessor
queue that functions in the same fashion as the floating-point queue.

3.4.3.7. Miscellaneous

Instructions in this category handle special circumstances within the integer unit (see Table 22). Execution of the
UNIMP instruction causes an illegal instruction trap, so its execution is normally avoided except as part of a checking
routine. Details of one possible use for UNIMP are given in its definition in SPARC V7.0 Instruction Set.

The IFLUSH instruction is used to flush a word from an internal (to the TSC691E) instruction cache. Current integer
unit implementations (TSC691E) do not incorporate an internal instruction cache, so IFLUSH would normally execute
as a NOP. However, if there is an external instruction cache, IFLUSH causes an illegal instruction trap if the IFT signal
is LOW (see Section 3.5)

3.4.4. Op Codes

This section contains tables that give a complete list of the instruction opcodes, both by functional groups and in
ascending numeric order.

3.4.4.1. Load/Store Instructions

Table 23. Load/Store Instruction Opcodes

Mnemonic
Opcodes with Format

Mnemonic
31 30 29 25 24 19 18 14 13 12 5 4 0

LD 1 1 rd 0 0 0 0 0 0 rs1 i =0 ignored rs2

i =1 simm13

LDA 1 1 rd 0 1 0 0 0 0 rs1 i =0 asi rs2

LDC 1 1 rd 1 1 0 0 0 0 rs1 i =0 ignored rs2

i =1 simm13

LDCSR 1 1 rd 1 1 0 0 0 1 rs1 i =0 ignored rs2

i =1 simm13

LDD 1 1 rd 0 0 0 0 1 1 rs1 i =0 ignored rs2

i =1 simm13

LDDA 1 1 rd 0 1 0 0 1 1 rs1 i =0 asi rs2

LDDC 1 1 rd 1 1 0 0 1 1 rs1 i =0 ignored rs2

i =1 simm13

LDDF 1 1 rd 1 0 0 0 1 1 rs1 i =0 ignored rs2

i =1 simm13

LDF 1 1 rd 1 0 0 0 0 0 rs1 i =0 ignored rs2

i =1 simm13

LDFSR 1 1 rd 1 0 0 0 0 1 rs1 i =0 ignored rs2

i =1 simm13

TSC691E

Rev. H (02 Dec.96)
35MATRA MHS

Opcodes with Format
Mnemonic

4 012 51318 1424 1929 2531 30
Mnemonic

LDSB 1 1 rd 0 0 1 0 0 1 rs1 i =0 ignored rs2

i =1 simm13

LDSBA 1 1 rd 0 1 1 0 0 1 rs1 i =0 asi rs2

LDSH 1 1 rd 0 0 1 0 1 0 rs1 i =0 ignored rs2

i =1 simm13

LDSHA 1 1 rd 0 1 1 0 1 0 rs1 i =0 asi rs2

LDSTUB 1 1 rd 0 0 1 1 0 1 rs1 i =0 ignored rs2

i =1 simm13

LDSTUBA 1 1 rd 0 1 1 1 0 1 rs1 i =0 asi rs2

LDUB 1 1 rd 0 0 0 0 0 1 rs1 i =0 ignored rs2

i =1 simm13

LDUBA 1 1 rd 0 1 0 0 0 1 rs1 i =0 asi rs2

LDUH 1 1 rd 0 0 0 0 1 0 rs1 i =0 ignored rs2

i =1 simm13

LDUHA 1 1 rd 0 1 0 0 1 0 rs1 i =0 asi rs2

ST 1 1 rd 0 0 0 1 0 0 rs1 i =0 ignored rs2

i =1 simm13

STA 1 1 rd 0 1 0 1 0 0 rs1 i =0 asi rs2

STB 1 1 rd 0 0 0 1 0 1 rs1 i =0 ignored rs2

i =1 simm13

STBA 1 1 rd 0 1 0 1 0 1 rs1 i =0 asi rs2

STC 1 1 rd 1 1 0 1 0 0 rs1 i =0 ignored rs2

i =1 simm13

STCSR 1 1 rd 1 1 0 1 0 1 rs1 i =0 ignored rs2

i =1 simm13

STD 1 1 rd 0 0 0 1 1 1 rs1 i =0 ignored rs2

i =1 simm13

STDA 1 1 rd 0 1 0 1 1 1 rs1 i =0 asi rs2

STDC 1 1 rd 1 1 0 1 1 1 rs1 i =0 ignored rs2

i =1 simm13

STDCQ 1 1 rd 1 1 0 1 1 0 rs1 i =0 ignored rs2

i =1 simm13

STDF 1 1 rd 1 0 0 1 1 1 rs1 i =0 ignored rs2

TSC691E

Rev. H (02 Dec.96)
36 MATRA MHS

Opcodes with Format
Mnemonic

4 012 51318 1424 1929 2531 30
Mnemonic

i =1 simm13

STDFQ 1 1 rd 1 0 0 1 1 0 rs1 i =0 ignored rs2

i =1 simm13

STF 1 1 rd 1 0 0 1 0 0 rs1 i =0 ignored rs2

i =1 simm13

STFSR 1 1 rd 1 0 0 1 0 1 rs1 i =0 ignored rs2

i =1 simm13

STH 1 1 rd 0 0 0 1 1 0 rs1 i =0 ignored rs2

i =1 simm13

STHA 1 1 rd 0 1 0 1 1 0 rs1 i =0 asi rs2

SWAP 1 1 rd 0 0 1 1 1 1 rs1 i =0 ignored rs2

i =1 simm13

SWAPA 1 1 rd 0 1 1 1 1 1 rs1 i =0 asi rs2

3.4.4.2. Arithmetic/Logical/Shift Instructions

Table 25. Arithmetic/Logical/Shift Instruction Opcodes

Mnemonic Opcodes with Format

31 30 29 25 24 19 18 14 13 12 5 4 0

ADD 1 0 rd 0 0 0 0 0 0 rs1 i =0 ignored rs2

i =1 simm13

ADDcc 1 0 rd 0 1 0 0 0 0 rs1 i =0 ignored rs2

i =1 simm13

ADDX 1 0 rd 0 0 1 0 0 0 rs1 i =0 ignored rs2

i =1 simm13

ADDXcc 1 0 rd 0 1 1 0 0 0 rs1 i =0 ignored rs2

i =1 simm13

AND 1 0 rd 0 0 0 0 0 1 rs1 i =0 ignored rs2

i =1 simm13

ANDcc 1 0 rd 0 1 0 0 0 1 rs1 i =0 ignored rs2

i =1 simm13

ANDN 1 0 rd 0 0 0 1 0 1 rs1 i =0 ignored rs2

i =1 simm13

ANDNcc 1 0 rd 0 1 0 1 0 1 rs1 i =0 ignored rs2

TSC691E

Rev. H (02 Dec.96)
37MATRA MHS

Opcodes with FormatMnemonic

4 012 51318 14 192429 2531 30

Mnemonic

i =1 simm13

MULScc 1 0 rd 1 0 0 1 0 0 rs1 i =0 ignored rs2

i =1 simm13

OR 1 0 rd 0 0 0 0 1 0 rs1 i =0 ignored rs2

i =1 simm13

ORcc 1 0 rd 0 1 0 0 1 0 rs1 i =0 ignored rs2

i =1 simm13

ORN 1 0 rd 0 0 0 1 1 0 rs1 i =0 ignored rs2

i =1 simm13

ORNcc 1 0 rd 0 1 0 1 1 0 rs1 i =0 ignored rs2

i =1 simm13

SLL 1 0 rd 1 0 0 1 0 1 rs1 i =0 ignored rs2

i =1 shcnt

SRA 1 0 rd 1 0 0 1 1 1 rs1 i =0 ignored rs2

i =1 shcnt

SRL 1 0 rd 1 0 0 1 1 0 rs1 i =0 ignored rs2

i =1 shcnt

SUB 1 0 rd 0 0 0 1 0 0 rs1 i =0 ignored rs2

i =1 simm13

SUBcc 1 0 rd 0 1 0 1 0 0 rs1 i =0 ignored rs2

i =1 simm13

SUBX 1 0 rd 0 0 1 1 0 0 rs1 i =0 ignored rs2

i =1 simm13

SUBXcc 1 0 rd 0 1 1 1 0 0 rs1 i =0 ignored rs2

i =1 simm13

TADDcc 1 0 rd 1 0 0 0 0 0 rs1 i =0 ignored rs2

i =1 simm13

TADDccTV 1 0 rd 1 0 0 0 1 0 rs1 i =0 ignored rs2

i =1 simm13

TSUBcc 1 0 rd 1 0 0 0 0 1 rs1 i =0 ignored rs2

i =1 simm13

TSUBccTV 1 0 rd 1 0 0 0 1 1 rs1 i =0 ignored rs2

i =1 simm13

TSC691E

Rev. H (02 Dec.96)
38 MATRA MHS

Opcodes with FormatMnemonic

4 012 51318 14 192429 2531 30

Mnemonic

XNOR 1 0 rd 0 0 0 1 1 1 rs1 i =0 ignored rs2

i =1 simm13

XNORcc 1 0 rd 0 1 0 1 1 1 rs1 i =0 ignored rs2

i =1 simm13

XOR 1 0 rd 0 0 0 0 1 1 rs1 i =0 ignored rs2

XOR 1 0 rd 0 0 0 0 1 1 rs1 i =1 simm13

XORcc 1 0 rd 0 1 0 0 1 1 rs1 i =0 ignored rs2

i =1 simm13

31 30 29 25 24 22 21 0

SETHI 0 0 rd 1 0 0 imm22

3.4.4.3. Control Transfer Instructions

Table 27. Control Transfer Instruction Opcodes

Mnemonic Opcodes with Format

31 30 29 25 24 19 18 14 13 12 5 4 0

JMPL 1 0 rd 1 1 1 0 0 0 rs1 i =0 ignored rs2

i =1 simm13

RESTORE 1 0 rd 1 1 1 1 0 1 rs1 i =0 ignored rs2

i =1 simm13

RETT 1 0 ignored 1 1 1 0 0 1 rs1 i =0 ignored rs2

i =1 simm13

SAVE 1 0 rd 1 1 1 1 0 0 rs1 i =0 ignored rs2

i =1 simm13

31 30 29 28 25 24 22 21 0

Bicc 0 0 a cond 0 1 0 disp22

CBccc 0 0 a cond 1 1 1 disp22

FBfcc 0 0 a cond 1 1 0 disp22

31 30 29 28 25 24 19 18 14 13 12 5 4 0

Ticc 1 0 I* cond 1 1 1 0 1 0 rs1 i =0 ignored rs2

i =1 simm13

CALL 0 1 disp30

*I = ignored.

TSC691E

Rev. H (02 Dec.96)
39MATRA MHS

Table 28. Bicc and Ticc Condition Codes

Cond. Test

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Never
Equal to
Less than or equal to
Less than
Less than or equal to, unsigned
Carry set (less than, unsigned)
Negative
OverFLOW set
Always
Not equal to
Greater than
Greater than or equal to
Greater than, unsigned
Carry clear (greater than or equal, unsigned)
Positive
OverFLOW clear

Table 29. FBfcc Condition Codes

Cond. Test

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Never
Not equal
Less than or greater to
Unordered or less than
Less than
Unordered or greater than
Greater than
Unordered
Always
Equal
Unordered or equal
Greater than or equal
Unordered or greater than or equal
Less than or equal
Unordered or less than or equal
Ordered

Table 30. CBccc Condition Codes

Opcode Cond. Test

CBN
CB123
CB12
CB13
CB1
CB23
CB2
CB3
CBA
CB0
CB03
CB02
CB023
CB01
CB013
CB012

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Never
1 or 2 or 3
1 or 2
1 or 3
1
2 or 3
2
3
Always
0
0 or 3
0 or 2
0 or 2 or 3
0 or 1
0 or 1 or 3
0 or 1 or 2

3.4.4.4. Read/Write Control Register Instructions

TSC691E

Rev. H (02 Dec.96)
40 MATRA MHS

Table 31. Read/Write Control Register Instruction Opcodes

Mnemonic Opcodes with Format

31 30 29 25 24 19 18 14 13 12 0

RDPSR 1 0 rd 1 0 1 0 0 1 ignored I* ignored

RDTBR 1 0 rd 1 0 1 0 1 1 ignored I* ignored

RDWIM 1 0 rd 1 0 1 0 1 0 ignored I* ignored

RDY 1 0 rd 1 0 1 0 0 0 ignored I* ignored

31 30 29 25 24 19 18 14 13 12 5 4 0

WRPSR 1 0 ignored 1 1 0 0 0 1 rs1 i =0 ignored rs2

i =1 simm13

WRTBR 1 0 ignored 1 1 0 0 1 1 rs1 i =0 ignored rs2

i =1 simm13

WRWIM 1 0 ignored 1 1 0 0 1 0 rs1 i =0 ignored rs2

i =1 simm13

WRY 1 0 ignored 1 1 0 0 0 0 rs1 i =0 ignored rs2

i =1 simm13

*I = ignored.

3.4.4.5. Floating-Point/Coprocessor Instructions

Table 32. Floating–Point /Coprocessor Instruction Opcodes

Mnemonic Opcodes with Format

31 30 29 25 24 19 18 14 13 5 4 0

FPOP1 1 0 rd 1 1 0 1 1 0 rs1 OPC rs2

FPOP2 1 0 rd 1 1 0 1 1 1 rs1 OPC rs2

FABSs 1 0 rd 1 1 0 1 0 0 ignored 0 0 0 0 0 1 0 0 1 rs2

FADDs 1 0 rd 1 1 0 1 0 0 rs1 0 0 1 0 0 0 0 0 1 rs2

FADDd 1 0 rd 1 1 0 1 0 0 rs1 0 0 1 0 0 0 0 1 0 rs2

FADDx 1 0 rd 1 1 0 1 0 0 rs1 0 0 1 0 0 0 0 1 1 rs2

FCMPs 1 0 ignored 1 1 0 1 0 1 rs1 0 0 1 0 1 0 0 0 1 rs2

FCMPd 1 0 ignored 1 1 0 1 0 1 rs1 0 0 1 0 1 0 0 1 0 rs2

FCMPx 1 0 ignored 1 1 0 1 0 1 rs1 0 0 1 0 1 0 0 1 1 rs2

FCMPEs 1 0 ignored 1 1 0 1 0 1 rs1 0 0 1 0 1 0 1 0 1 rs2

FCMPEd 1 0 ignored 1 1 0 1 0 1 rs1 0 0 1 0 1 0 1 1 0 rs2

FCMPEx 1 0 ignored 1 1 0 1 0 1 rs1 0 0 1 0 1 0 1 1 1 rs2

FDIVs 1 0 rd 1 1 0 1 0 0 rs1 0 0 1 0 0 1 1 0 1 rs2

TSC691E

Rev. H (02 Dec.96)
41MATRA MHS

Opcodes with FormatMnemonic

 4 051318 14 1924 252931 30

Mnemonic

FDIVd 1 0 rd 1 1 0 1 0 0 rs1 0 0 1 0 0 1 1 1 0 rs2

FDIVx 1 0 rd 1 1 0 1 0 0 rs1 0 0 1 0 0 1 1 1 1 rs2

FMOVs 1 0 rd 1 1 0 1 0 0 ignored 0 0 0 0 0 0 0 0 1 rs2

FMULs 1 0 rd 1 1 0 1 0 0 rs1 0 0 1 0 0 1 0 0 1 rs2

FMULd 1 0 rd 1 1 0 1 0 0 rs1 0 0 1 0 0 1 0 1 0 rs2

FMULx 1 0 rd 1 1 0 1 0 0 rs1 0 0 1 0 0 1 0 1 1 rs2

FNEGs 1 0 rd 1 1 0 1 0 0 ignored 0 0 0 0 0 0 1 0 1 rs2

FSQRTs 1 0 rd 1 1 0 1 0 0 ignored 0 0 0 1 0 1 0 0 1 rs2

FSQRTd 1 0 rd 1 1 0 1 0 0 ignored 0 0 0 1 0 1 0 1 0 rs2

FSQRTx 1 0 rd 1 1 0 1 0 0 ignored 0 0 0 1 0 1 0 1 1 rs2

FSUBs 1 0 rd 1 1 0 1 0 0 rs1 0 0 1 0 0 0 1 0 1 rs2

FSUBd 1 0 rd 1 1 0 1 0 0 rs1 0 0 1 0 0 0 1 1 0 rs2

FSUBx 1 0 rd 1 1 0 1 0 0 rs1 0 0 1 0 0 0 1 1 1 rs2

FdTOi 1 0 rd 1 1 0 1 0 0 ignored 0 1 1 0 1 0 0 1 0 rs2

FdTOs 1 0 rd 1 1 0 1 0 0 ignored 0 1 1 0 0 0 1 1 0 rs2

FdTOx 1 0 rd 1 1 0 1 0 0 ignored 0 1 1 0 0 1 1 1 0 rs2

FiTOd 1 0 rd 1 1 0 1 0 0 ignored 0 1 1 0 0 1 0 0 0 rs2

FiTOs 1 0 rd 1 1 0 1 0 0 ignored 0 1 1 0 0 0 1 0 0 rs2

FiTOx 1 0 rd 1 1 0 1 0 0 ignored 0 1 1 0 0 1 1 0 0 rs2

FsTOd 1 0 rd 1 1 0 1 0 0 ignored 0 1 1 0 0 1 0 0 1 rs2

FsTOi 1 0 rd 1 1 0 1 0 0 ignored 0 1 1 0 1 0 0 0 1 rs2

FsTOx 1 0 rd 1 1 0 1 0 0 ignored 0 1 1 0 0 1 1 0 1 rs2

FxTOi 1 0 rd 1 1 0 1 0 0 ignored 0 1 1 0 1 0 0 1 1 rs2

FxTOs 1 0 rd 1 1 0 1 0 0 ignored 0 1 1 0 0 0 1 1 1 rs2

FxTOd 1 0 rd 1 1 0 1 0 0 ignored 0 1 1 0 0 1 0 1 1 rs2

3.4.4.6. Miscellaneous Instructions

Table 33. Miscellaneous Instruction Opcodes

Mnemonic Opcodes with Format

31 30 29 25 24 19 18 14 13 12 5 4 0

IFLUSH 1 0 ignored 1 1 1 0 1 1 rs1 i =0 ignored rs2

i =1 simm13

UNIMP 0 0 ignored 0 0 0 const22

TSC691E

Rev. H (02 Dec.96)
42 MATRA MHS

3.4.4.7. Opcodes In Ascending Numeric Order

Table 34. Instruction Opcode Numeric Listing

Mnemonic Opcodes with Format

31 30 29 25 24 22 21 19 18 14 13 12 5 4 0

UNIMP 0 0 ignored 0 0 0 const22

Bicc 0 0 a cond 0 1 0 disp22

SETHI 0 0 rd 1 0 0 imm22

FBfcc 0 0 a cond 1 1 0 disp22

CBccc 0 0 a cond 1 1 1 disp22

CALL 0 1 disp30

ADD 1 0 rd 0 0 0 0 0 0 rs1 i =0 ignored rs2

i =1 simm13

AND 1 0 rd 0 0 0 0 0 1 rs1 i =0 ignored rs2

i =1 simm13

OR 1 0 rd 0 0 0 0 1 0 rs1 i =0 ignored rs2

i =1 simm13

XOR 1 0 rd 0 0 0 0 1 1 rs1 i =0 ignored rs2

i =1 simm13

SUB 1 0 rd 0 0 0 1 0 0 rs1 i =0 ignored rs2

i =1 simm13

ANDN 1 0 rd 0 0 0 1 0 1 rs1 i =0 ignored rs2

i =1 simm13

ORN 1 0 rd 0 0 0 1 1 0 rs1 i =0 ignored rs2

i =1 simm13

XNOR 1 0 rd 0 0 0 1 1 1 rs1 i =0 ignored rs2

i =1 simm13

ADDX 1 0 rd 0 0 1 0 0 0 rs1 i =0 ignored rs2

i =1 simm13

SUBX 1 0 rd 0 0 1 1 0 0 rs1 i =0 ignored rs2

i =1 simm13

ADDcc 1 0 rd 0 1 0 0 0 0 rs1 i =0 ignored rs2

i =1 simm13

ANDcc 1 0 rd 0 1 0 0 0 1 rs1 i =0 ignored rs2

i =1 simm13

TSC691E

Rev. H (02 Dec.96)
43MATRA MHS

Table 35. Instruction Opcode Numeric Listing (continued)

Mnemonic Opcodes with Format

31 30 29 25 24 22 21 19 18 14 13 12 5 4 0

ORcc 1 0 rd 0 1 0 0 1 0 rs1 i =0 ignored rs2

i =1 simm13

XORcc 1 0 rd 0 1 0 0 1 1 rs1 i =0 ignored rs2

i =1 simm13

SUBcc 1 0 rd 0 1 0 1 0 0 rs1 i =0 ignored rs2

i =1 simm13

ANDNcc 1 0 rd 0 1 0 1 0 1 rs1 i =0 ignored rs2

i =1 simm13

ORNcc 1 0 rd 0 1 0 1 1 0 rs1 i =0 ignored rs2

i =1 simm13

XNORcc 1 0 rd 0 1 0 1 1 1 rs1 i =0 ignored rs2

i =1 simm13

ADDXcc 1 0 rd 0 1 1 0 0 0 rs1 i =0 ignored rs2

i =1 simm13

SUBXcc 1 0 rd 0 1 1 1 0 0 rs1 i =0 ignored rs2

i =1 simm13

TADDcc 1 0 rd 1 0 0 0 0 0 rs1 i =0 ignored rs2

i =1 simm13

TSUBcc 1 0 rd 1 0 0 0 0 1 rs1 i =0 ignored rs2

i =1 simm13

TADDccTV 1 0 rd 1 0 0 0 1 0 rs1 i =0 ignored rs2

i =1 simm13

TSUBccTV 1 0 rd 1 0 0 0 1 1 rs1 i =0 ignored rs2

i =1 simm13

MULScc 1 0 rd 1 0 0 1 0 0 rs1 i =0 ignored rs2

i =1 simm13

SLL 1 0 rd 1 0 0 1 0 1 rs1 i =0 ignored rs2

i =1 shcnt

TSC691E

Rev. H (02 Dec.96)
44 MATRA MHS

Opcodes with FormatMnemonic

 4 012 51318 1421 1924 22 252931 30

Mnemonic

SRL 1 0 rd 1 0 0 1 1 0 rs1 i =0 ignored rs2

i =1 shcnt

SRA 1 0 rd 1 0 0 1 1 1 rs1 i =0 ignored rs2

i =1 shcnt

RDY 1 0 rd 1 0 1 0 0 0 ignored I* ignored

RDPSR 1 0 rd 1 0 1 0 0 1 ignored I* ignored

RDWIM 1 0 rd 1 0 1 0 1 0 ignored I* ignored

RDTBR 1 0 rd 1 0 1 0 1 1 ignored I* ignored

WRY 1 0 ignored 1 1 0 0 0 0 rs1 i =0 ignored rs2

i =1 simm13

WRPSR 1 0 ignored 1 1 0 0 0 1 rs1 i =0 ignored rs2

i =1 simm13

WRWIM 1 0 ignored 1 1 0 0 1 0 rs1 i =0 ignored rs2

i =1 simm13

WRTBR 1 0 ignored 1 1 0 0 1 1 rs1 i =0 ignored rs2

i =1 simm13

TSC691E

Rev. H (02 Dec.96)
45MATRA MHS

Table 36. Instruction Opcode Numeric Listing (continued)

Mnemonic Opcodes with Format

31 30 29 25 24 22 21 19 18 14 13 12 5 4 0

FPOP1 1 0 rd 1 1 0 1 0 0 rs1 OPF rs2

FMOVs 1 0 rd 1 1 0 1 0 0 ignored 0 0 0 0 0 0 0 0 1 rs2

FNEGs 1 0 rd 1 1 0 1 0 0 ignored 0 0 0 0 0 0 1 0 1 rs2

FABSs 1 0 rd 1 1 0 1 0 0 ignored 0 0 0 0 0 1 0 0 1 rs2

FSQRTs 1 0 rd 1 1 0 1 0 0 ignored 0 0 0 1 0 1 0 0 1 rs2

FSQRTd 1 0 rd 1 1 0 1 0 0 ignored 0 0 0 1 0 1 0 1 0 rs2

FSQRTx 1 0 rd 1 1 0 1 0 0 ignored 0 0 0 1 0 1 0 1 1 rs2

FADDs 1 0 rd 1 1 0 1 0 0 rs1 0 0 1 0 0 0 0 0 1 rs2

FADDd 1 0 rd 1 1 0 1 0 0 rs1 0 0 1 0 0 0 0 1 0 rs2

FADDx 1 0 rd 1 1 0 1 0 0 rs1 0 0 1 0 0 0 0 1 1 rs2

FSUBs 1 0 rd 1 1 0 1 0 0 rs1 0 0 1 0 0 0 1 0 1 rs2

FSUBd 1 0 rd 1 1 0 1 0 0 rs1 0 0 1 0 0 0 1 1 0 rs2

FSUBx 1 0 rd 1 1 0 1 0 0 rs1 0 0 1 0 0 0 1 1 1 rs2

FMULs 1 0 rd 1 1 0 1 0 0 rs1 0 0 1 0 0 1 0 0 1 rs2

FMULd 1 0 rd 1 1 0 1 0 0 rs1 0 0 1 0 0 1 0 1 0 rs2

FMULx 1 0 rd 1 1 0 1 0 0 rs1 0 0 1 0 0 1 0 1 1 rs2

FDIVs 1 0 rd 1 1 0 1 0 0 rs1 0 0 1 0 0 1 1 0 1 rs2

FDIVd 1 0 rd 1 1 0 1 0 0 rs1 0 0 1 0 0 1 1 1 0 rs2

FDIVx 1 0 rd 1 1 0 1 0 0 rs1 0 0 1 0 0 1 1 1 1 rs2

FiTOs 1 0 rd 1 1 0 1 0 0 ignored 0 1 1 0 0 0 1 0 0 rs2

FdTOs 1 0 rd 1 1 0 1 0 0 ignored 0 1 1 0 0 0 1 1 0 rs2

FxTOs 1 0 rd 1 1 0 1 0 0 ignored 0 1 1 0 0 0 1 1 1 rs2

FiTOd 1 0 rd 1 1 0 1 0 0 ignored 0 1 1 0 0 1 0 0 0 rs2

FsTOd 1 0 rd 1 1 0 1 0 0 ignored 0 1 1 0 0 1 0 0 1 rs2

FxTOd 1 0 rd 1 1 0 1 0 0 ignored 0 1 1 0 0 1 0 1 1 rs2

FiTOx 1 0 rd 1 1 0 1 0 0 ignored 0 1 1 0 0 1 1 0 0 rs2

TSC691E

Rev. H (02 Dec.96)
46 MATRA MHS

Opcodes with FormatMnemonic

 4 012 51318 1421 1924 22 252931 30

Mnemonic

FsTOx 1 0 rd 1 1 0 1 0 0 ignored 0 1 1 0 0 1 1 0 1 rs2

FdTOx 1 0 rd 1 1 0 1 0 0 ignored 0 1 1 0 0 1 1 1 0 rs2

FsTOi 1 0 rd 1 1 0 1 0 0 ignored 0 1 1 0 1 0 0 0 1 rs2

FdTOi 1 0 rd 1 1 0 1 0 0 ignored 0 1 1 0 1 0 0 1 0 rs2

FxTOi 1 0 rd 1 1 0 1 0 0 ignored 0 1 1 0 1 0 0 1 1 rs2

FPOP2 1 0 rd 1 1 0 1 0 1 rs1 OPF rs2

FCMPs 1 0 ignored 1 1 0 1 0 1 rs1 0 0 1 0 1 0 0 0 1 rs2

FCMPd 1 0 ignored 1 1 0 1 0 1 rs1 0 0 1 0 1 0 0 1 0 rs2

FCMPx 1 0 ignored 1 1 0 1 0 1 rs1 0 0 1 0 1 0 0 1 1 rs2

FCMPEs 1 0 ignored 1 1 0 1 0 1 rs1 0 0 1 0 1 0 1 0 1 rs2

FCMPEd 1 0 ignored 1 1 0 1 0 1 rs1 0 0 1 0 1 0 1 1 0 rs2

FCMPEx 1 0 ignored 1 1 0 1 0 1 rs1 0 0 1 0 1 0 1 1 1 rs2

FPOP1 1 0 rd 1 1 0 1 1 0 rs1 OPC rs2

FPOP2 1 0 rd 1 1 0 1 1 1 rs1 OPC rs2

JMPL 1 0 rd 1 1 1 0 0 0 rs1 i =0 ignored rs2

i =1 simm13

TSC691E

Rev. H (02 Dec.96)
47MATRA MHS

Table 37. Instruction Opcodes Numeric Listing (continued)

Mnemonic Opcodes with Format

31 30 29 25 24 19 18 14 13 12 5 4 0

RETT 1 0 ignored 1 1 1 0 0 1 rs1 i =0 ignored rs2

i =1 simm13

Ticc 1 0 I* cond 1 1 1 0 1 0 rs1 i =0 ignored rs2

i =1 simm13

IFLUSH 1 0 ignored 1 1 1 0 1 1 rs1 i =0 ignored rs2

i =1 simm13

SAVE 1 0 rd 1 1 1 1 0 0 rs1 i =0 ignored rs2

i =1 simm13

RESTORE 1 0 rd 1 1 1 1 0 1 rs1 i =0 ignored rs2

i =1 simm13

LD 1 1 rd 0 0 0 0 0 0 rs1 i =0 ignored rs2

i =1 simm13

LDUB 1 1 rd 0 0 0 0 0 1 rs1 i =0 ignored rs2

i =1 simm13

LDUH 1 1 rd 0 0 0 0 1 0 rs1 i =0 ignored rs2

i =1 simm13

LDD 1 1 rd 0 0 0 0 1 1 rs1 i =0 ignored rs2

i =1 simm13

ST 1 1 rd 0 0 0 1 0 0 rs1 i =0 ignored rs2

i =1 simm13

STB 1 1 rd 0 0 0 1 0 1 rs1 i =0 ignored rs2

i =1 simm13

STH 1 1 rd 0 0 0 1 1 0 rs1 i =0 ignored rs2

i =1 simm13

STD 1 1 rd 0 0 0 1 1 1 rs1 i =0 ignored rs2

i =1 simm13

TSC691E

Rev. H (02 Dec.96)
48 MATRA MHS

Opcodes with FormatMnemonic

 4 012 51318 14 1924 252931 30

Mnemonic

LDSB 1 1 rd 0 0 1 0 0 1 rs1 i =0 ignored rs2

i =1 simm13

LDSH 1 1 0 0 1 0 1 0 rs1 i =0 ignored rs2

i =1 simm13

LDSTUB 1 1 rd 0 0 1 1 0 1 rs1 i =0 ignored rs2

i =1 simm13

SWAP 1 1 rd 0 0 1 1 1 1 rs1 i =0 ignored rs2

i =1 simm13

LDA 1 1 rd 0 1 0 0 0 0 rs1 i =0 asi rs2

LDUBA 1 1 rd 0 1 0 0 0 1 rs1 i =0 asi rs2

LDUHA 1 1 rd 0 1 0 0 1 0 rs1 i =0 asi rs2

LDDA 1 1 rd 0 1 0 0 1 1 rs1 i =0 asi rs2

STA 1 1 rd 0 1 0 1 0 0 rs1 i =0 asi rs2

STBA 1 1 rd 0 1 0 1 0 1 rs1 i =0 asi rs2

STHA 1 1 rd 0 1 0 1 1 0 rs1 i =0 asi rs2

STDA 1 1 rd 0 1 0 1 1 1 rs1 i =0 asi rs2

TSC691E

Rev. H (02 Dec.96)
49MATRA MHS

Table 38. Instruction Opcodes Numeric Listing (continued)

Mnemonic Opcodes with Format

31 30 29 25 24 22 21 19 18 14 13 12 5 4 0

LDSBA 1 1 rd 0 1 1 0 0 1 rs1 i =0 asi rs2

LDSHA 1 1 rd 0 1 1 0 1 0 rs1 i =0 asi rs2

LDSTUBA 1 1 rd 0 1 1 1 0 1 rs1 i =0 asi rs2

SWAPA 1 1 rd 0 1 1 1 1 1 rs1 i =0 asi rs2

LDF 1 1 rd 1 0 0 0 0 0 rs1 i =0 ignored rs2

i =1 simm13

LDFSR 1 1 rd 1 0 0 0 0 1 rs1 i =0 ignored rs2

i =1 simm13

LDDF 1 1 rd 1 0 0 0 1 1 rs1 i =0 ignored rs2

i =1 simm13

STF 1 1 1 0 0 1 0 0 rs1 i =0 ignored rs2

i =1 simm13

STFSR 1 1 rd 1 0 0 1 0 1 rs1 i =0 ignored rs2

i =1 simm13

STDFQ 1 1 rd 1 0 0 1 1 0 rs1 i =0 ignored rs2

i =1 simm13

STDF 1 1 rd 1 0 0 1 1 1 rs1 i =0 ignored rs2

i =1 simm13

LDC 1 1 rd 1 1 0 0 0 0 rs1 i =0 ignored rs2

i =1 simm13

LDCSR 1 1 rd 1 1 0 0 0 1 rs1 i =0 ignored rs2

i =1 simm13

LDDC 1 1 rd 1 1 0 0 1 1 rs1 i =0 ignored rs2

i =1 simm13

STC 1 1 rd 1 1 0 1 0 0 rs1 i =0 ignored rs2

i =1 simm13

STCSR 1 1 rd 1 1 0 1 0 1 rs1 i =0 ignored rs2

i =1 simm13

STDCQ 1 1 rd 1 1 0 1 1 0 rs1 i =0 ignored rs2

i =1 simm13

STDC 1 1 rd 1 1 0 1 1 1 rs1 i =0 ignored rs2

i =1 simm13

TSC691E

Rev. H (02 Dec.96)
50 MATRA MHS

3.5. Signal Description

This section provides a description of the TSC691E’s external signals. Functionally, the IU’s external signals can be
divided into four categories: memory subsystem interface, floating-point/coprocessor interface, interrupt and control
signals, and power and clock signals.

FXACK
FCC[1:0]

FCCV
FINS1
FINS2

CXACK
CCC[1:0]

CCCV
CINS1
CINS2

INST

FLUSH

A[31:0]

ASI[7:0]
SIZE[1:0]

MAO

D[31:0]

IRL[3:0]
INTACK

RD

WRT
DXFER

LDSTO
INULL
LOCK

CLK

FPSYN

TSC691E SPARC

Integer Unit

W

APAR/ASPAR/DPAR/IMPAR/IFPAR
FIPAR

MDS
MHOLDA
MHOLDB

BHOLD
TOE

COE

DOE
AOE

IFT

MEXC
RESET
ERROR

FEXC
FHOLD
FP
HWERROR

MCERR

CMODE

FLOW

601MODE

HALT

TAP = TCLK/TRST/TMS/TDI/TDO

CEXC
CHOLD

FP

Figure 22. TSC691E External Signals

Signals that are active LOW are marked with an overscore; all others are active HIGH. Figure 22 summarizes the
signals described in this section. Table 39 provides a summary of the external signals for the TSC691E.

Note: In the descriptions below, and in this manual in general, when a signal is asserted it is active, and when it is
deasserted it is inactive. When a signal is HIGH, it is a logical 1; when it is LOW, it is a logical 0. This is true regardless
of whether it is asserted or deasserted.

TSC691E

Rev. H (02 Dec.96)
51MATRA MHS

Table 39. TSC691E External Signal Summary

Memory Subsystem Interface Signals: Impedance of Three–State
Output =20kΩ

Signal Name Description Signal Type Active

A<31:0> Address Bus Three–State Output

APAR Address Bus Parity Three–State Output HIGH

AOE Address Output Enable Input LOW

ASI<7:0> Address Space Identifier Three–State Output

COE Control Output Enable Input LOW

BHOLD Bus Hold Input LOW

D<31:0> Data Bus Three–State BiDir.

DPAR Data Bus Parity Three-State BiDir. HIGH

DOE Data Output Enable Input LOW

DXFER Data Transfer Three–State Output HIGH

IFT Instruction Cache Flush Trap Input LOW

INULL Integer Unit Nullify Cycle Three–State Output HIGH

LDSTO Atomic Load-Store Three–State Output HIGH

LOCK Bus Lock Three–State Output HIGH

MAO Memory Address Output Input HIGH

MDS Memory Data Strobe Input LOW

MEXC Memory Exception Input LOW

MHOLDA Memory Bus Hold A Input LOW

MHOLDB Memory Bus Hold B Input LOW

RD Read Access Three–State Output HIGH

SIZE<1:0> Bus Transaction Size Three–State Output

ASPAR ASI and SIZE Parity Three–State Output HIGH

WE Write Enable Three–State Output LOW

WRT Advanced Write Three–State Output HIGH

IMPAR IU to MEC [1] Control Parity Three–State Output HIGH

Floating–Point / Coprocessor Interface Signals:

Signal Name Description Signal Type Active

CCC<1:0> Coprocessor Condition Codes Input

CCCV Coprocessor Condition Codes Valid Input HIGH

CEXC Coprocessor Exception Input LOW

CHOLD Coprocessor Hold Input LOW

CINS1 Coprocessor Instruction in Buffer 1 Three–State Output HIGH

TSC691E

Rev. H (02 Dec.96)
52 MATRA MHS

Floating–Point / Coprocessor Interface Signals:

ActiveSignal TypeDescriptionSignal Name

CINS2 Coprocessor Instruction in Buffer 2 Three–State Output HIGH

FP Coprocessor Unit Present Input LOW

CXACK Coprocessor Exception Acknowledge Three–State Output HIGH

FCC<1:0> Floating–Point Condition Codes Input

FCCV Floating–Point Condition Codes Valid Input HIGH

FEXC Floating–Point Exception Input LOW

FHOLD Floating–Point Hold Input LOW

FIPAR FPU to IU Control Parity Input HIGH

FINS1 Floating–Point Instruction in Buffer 1 Three–State Output HIGH

FINS2 Floating–Point Instruction in Buffer 2 Three–State Output HIGH

FLUSH Floating–Point/Coprocessor Instruction Flush Three–State Output HIGH

FP Floating–Point Unit Present Input LOW

FXACK Floating–Point Exception Acknowledge Three–State Output HIGH

INST Instruction Fetch Three–State Output HIGH

IFPAR IU to FPU Control Parity Three-State Output HIGH

Note 1 : TSC693E = Memory controller system support circuit which contains fault detection and peripheral control
function.

Table 40. TSC691E External Signal Summary (continued)

Interrupt and Control Signals:

Signal Name Description Signal Type Active

IRL<3:0> Interrupt Request Level Input

INTACK Interrupt Acknowledge Three–State Output HIGH

RESET Reset Input LOW

ERROR Error State Three–State Output LOW

HWERROR Hardware error Detected Three–State Output LOW

MCERR Comparison error Three–State Output LOW

FLOW Enable Program FLOW Control Input LOW

CMODE Checker Mode Input LOW

601MODE Normal TSC691 Mode Input LOW

FPSYN Floating–Point Synonym Mode Input HIGH

TOE Test Mode Output Enable Input LOW

HALT Halt Mode Input LOW

TSC691E

Rev. H (02 Dec.96)
53MATRA MHS

Test Access Port Signals:

Signal Name Description Signal Type Active

TCLK Test Clock Input

TRST Test reset Input LOW

TMS Test Mode Select Input HIGH

TDI Test Data Input Input

TDO Test Data Output Three-State Output

Power and Clock Signals:

Signal Name Description Signal Type Active

CLK Clock Input

VCCI Main internal VCC Input

VCCO Output driver VCC Input

VCCT Input circuit VCC Input

VSSI Main internal VSS Input

VSSO Output driver VSS Input

VSST Input circuit VSS Input

3.5.1. Memory Subsystem Interface Signals

Memory interface signals consist of the address lines (40 bits), bidirectional data lines (32 bits), transaction size lines
(2 bits), and various control signals.

3.5.1.1. A<31:0>—Address Bus (output)

The 32-bit address bus carries instruction or data addresses during a fetch or load/store operation. Addresses are sent
out unlatched and must be latched external to the TSC691E. Assertion of the MAO signal during a cache miss (which
is signaled by pulling one of the MHOLD lines low) will force the Integer Unit to place the previous (missed) address
on the address bus. The address bus is three-stated (on chip pull_up resistor=20kΩ) when the AOE or TOE signal is
deasserted (HIGH).

3.5.1.2. APAR—Address Bus Parity (output)

This signal contains the odd parity over the 32-bit address bus and is asserted simultaneously with the memory
address.It is high-Z (on chip pull_up resistor=20kΩ) when the AOE or TOE signal is deasserted.

3.5.1.3. AOE—Address Output Enable (input)

Assertion of this signal enables the output drivers for the address bus, A<31:0>, and the ASI bus, ASI<7:0>, and is the
normal condition. Deassertion of AOE three-states (on chip pull_up resistor=20kΩ) the output drivers and should only
be done when the bus is granted to another bus master (i.e., when either BHOLD or MHOLDA/B is asserted).

3.5.1.4. ASI<7:0>—Address Space Identifier (output)

These 8 bits constitute the Address Space Identifier (ASI), which identifies the memory address space to which the
instruction or data access is being directed. The ASI bits are sent out unlatched—simultaneously with the memory
address—and must be latched externally. Assertion of the MAO signal during a cache miss (which is signaled by pulling
one of the MHOLD lines low) will force the integer unit to place the previous address space identifier on the ASI<7:0>
pins. The ASI pins are three-stated (on chip pull_up resistor=20kΩ) when the AOE or TOE signal is deasserted (HIGH).
Encoding of the ASI bits is shown in Table 41 .

TSC691E

Rev. H (02 Dec.96)
54 MATRA MHS

Table 41. ASI Assignments

TSC691E
Address Space Identifier (ASI) Address Space

00001000 (08 H) User Instruction

00001010 (0A H) User Data

00001001 (09 H) Supervisor Instruction

00001011 (0B H) Supervisor Data

CLK

A<31:0> A2 A3

1 2 3 4 5 6

D<31:0>

A4

Inst 2 Inst 3 Inst 4

A1

Wr PSR

A5 A6

Inst 5

ASI[7:0] O9 08

Figure 23. ASI timing with a WRPSR Instruction

3.5.1.5. ASPAR—ASI and SIZE Parity (output)

This signal contains the odd parity over the 8-bit address space identifier and 2 bit Bus Transaction Size. It is asserted
simultaneously with the ASI and SIZE and will be high-Z (on chip pull_up resistor=20kΩ) when the AOE, COE or
TOE signal is deasserted.

3.5.1.6. BHOLD—Bus Hold (input)

BHOLD is asserted when an external bus master wants control of the data bus. Assertion of this signal will freeze the
processor pipeline, so after deassertion of BHOLD, external logic must guarantee that the data at all inputs to the
TSC691E is the same as it was before BHOLD was asserted. This signal is tested on the falling edge (midpoint) of
a cycle and must be valid and stable at the processor for the duration of the specified set–up time prior to the falling
edge of CLK. All HOLD signals are latched in the TSC691E (transparent latch with clock high) before they are used.
Because MDS and MEXC signals are recognized while this input is active, BHOLD should only be used for bus access
requests by an external device. BHOLD should not be asserted when LOCK is asserted.

3.5.1.7. COE—Control Output Enable (input)

Assertion of this signal enables the output drivers for SIZE<1:0>, RD, WE, WRT, LOCK, LDSTO, and DXFER
outputs, and is the normal condition. Deassertion of COE three-states (on chip pull_up resistor=20kΩ) these output
drivers and should only be done when the bus is granted to another bus master (i.e., when either BHOLD or
MHOLDA/B is asserted).

3.5.1.8. D<31:0>—Data Bus (bidirectional)

These signals form a 32-bit bidirectional data bus that serves as the interface between the integer unit and memory.
The data bus is only driven by the TSC691E during the execution of integer store instructions and the store cycle of
atomic-load-store instructions. Similarly, the FPU drives the data bus only during the execution of floating-point store
instructions.

TSC691E

Rev. H (02 Dec.96)
55MATRA MHS

Store data is sent out unlatched and must be latched externally before it is used. Once latched, store data is valid during
the second data cycle of a store single access, the second and third data cycle of a store double access, and the third
data cycle of an atomic-load-store access.

Alignment for load and store instructions is performed by the processor. Doublewords are aligned on 8-byte boundaries,
words on 4-byte boundaries, and halfwords on 2-byte boundaries. If a doubleword, word, or halfword load or store
instruction generates an improperly aligned address, a memory address not aligned trap will occur. Instructions and
operands are always expected to reside in a 32-bit wide memory. D<31> corresponds to the most significant bit of the
most significant byte of a 32-bit word going to or from memory.

The Data bus is three-stated (on chip pull_up resistor=20kΩ) when the DOE or TOE signal is deasserted (HIGH)

3.5.1.9.DPAR—Data Bus Parity (bidirectional)

This signal contains the odd parity over the 32-bit bidirectional data bus.

In case of store data operations the parity bit is generated and launched in parallel by the IU. In case of load data
operations the parity is checked by the IU.

This signal will be high-Z (on chip pull_up resistor=20kΩ) when the DOE or TOE signal is deasserted.

3.5.1.10. DOE—Data Output Enable (input)

Assertion of this signal enables the output drivers for the data bus, D<31:0>, and is the normal condition. Deassertion
of DOE three-states (on chip pull_up resistor=20kΩ) the data bus output drivers and should only be done when the bus
is granted to another bus master (i.e., when either BHOLD or MHOLDA/B is asserted).

3.5.1.11. DXFER—Data Transfer (output)

DXFER is used to differentiate between the addresses being sent out for instruction fetches and the addresses of data
fetches. DXFER is asserted by the processor during the address cycles of all bus data transfer cycles, including both
cycles of store single and all three cycles of store double and atomic load-store. DXFER is sent out unlatched and must
be latched externally before it is used.

3.5.1.12. IFT—Instruction Cache Flush Trap (input)

The state of this signal determines whether or not execution of the IFLUSH instruction generates a trap. If IFT=0, then
execution of IFLUSH causes an illegal instruction trap. If IFT=1, then IFLUSH executes like a NOP with no side
effects.

3.5.1.13. INULL—Integer Unit Nullify Cycle (output)

The processor asserts INULL to indicate that the current memory access is being nullified. It is asserted in the same
cycle in which the address being nullified is active (though no longer on the address bus, the address is held in the
external address latches). INULL is used to prevent a cache miss (in systems with cache memory) and to disable
memory exception generation for the current memory access. This means that MDS and MEXC should not be asserted
for a memory access in which INULL=1. INULL is a latched output and should not be latched externally. If a
floating-point unit or coprocessor is present in the system, INULL should be Ored with the FNULL and CNULL signals
to generate a final NULL signal.

INULL is asserted under the following conditions:

2. During the second data cycle of any store instruction (including Atomic Load-Store) to nullify the second occur-
rence of the store address.

3. On all traps, to nullify the third instruction fetch after the trapped instruction. For reset, it nullifies the error-produc-
ing address.

4. On a load in which the hardware interlock is activated.

5. JMPL and RETT instructions.

3.5.1.14. LDSTO—Atomic Load–Store (output)

This signal is used to identify an atomic load-store to the system and is asserted by the integer unit during all the data
cycles (the load cycle and both store cycles) of atomic load-store instructions. LDSTO is sent out unlatched and must
be latched externally before it is used.

TSC691E

Rev. H (02 Dec.96)
56 MATRA MHS

3.5.1.15. LOCK—Bus Lock (output)

LOCK is asserted by the processor when it needs to retain control of the bus (address and data) for multiple cycle
transactions (Load Double, Store Single and Double, Atomic Load–Store). The bus will not be granted to another bus
master as long as LOCK is asserted. Note that BHOLD should not be asserted in the processor clock cycle which follows
a cycle in which LOCK is asserted. LOCK is sent out unlatched and must be latched externally before it is used.

3.5.1.16. MAO—Memory Address Output (input)

This signal is asserted during an MHOLD condition to force the previous (missed) memory access parameters back
on their various busses and control lines. The miss parameters are those that were valid on the rising edge of the clock,
one cycle before the cycle in which MHOLD was asserted. A logic HIGH value at this signal during a cache miss causes
the integer unit to put A<31:0>, ASI<7:0>, SIZE<1:0>, RD, WE, WRT, LDSTO, LOCK, and DXFER values
corresponding to the missed memory address on the bus.

Normally, MAO is kept at a LOW level, thereby selecting the access parameters for the current memory address. MAO
should not be used for a cache miss during a store cycle, because it would select the wrong value for WE.

MAO must be driven LOW while RESET is LOW.

3.5.1.17. MDS—Memory Data Strobe (input)

MDS is asserted by the memory system to enable the clock to the integer unit’s instruction register (during an
instruction fetch) or to the load result register (during a data fetch) while the pipeline is frozen with an MHOLDA/B.
In a system with cache, MDS is used to signal the processor when the missed data (cache miss) is ready on the data
bus. In a system with slow memories, MDS tells the processor when the read data is available on the bus. During a cache
line replacement, MDS may be asserted anywhere within the MHOLD cycle and deasserted before MHOLD is
released. For example, if a cache miss occurs on word 2 of a 4-word cache line, MDS should only be driven active while
word 2 is being replaced in the cache.

MDS is also used to strobe in the MEXC memory exception signal. MDS may only be asserted when the pipeline is
frozen with MHOLDA/B. The TSC691E samples MDS with an on-chip transparent latch before it is used.

3.5.1.18. MEXC—Memory Exception (input)

Assertion of this signal by the memory system initiates an instruction access exception or data access exception trap
and indicates to the TSC691E that the memory system was unable to supply a valid instruction or data. If MEXC is
asserted during an instruction fetch cycle, it generates an instruction access exception trap. If asserted during a data
cycle, it generates a data access exception trap.

MEXC is used as a qualifier for the MDS signal, and must be asserted when both MHOLDA/B and MDS are already
asserted. If MDS is applied without MEXC, the TSC691E accepts the contents of the data bus as valid. If MEXC
accompanies MDS, an exception is generated and the data bus content is ignored.

MEXC is latched in the processor on the rising edge of CLK and is used in the following cycle. MEXC must be
deasserted in the same clock cycle in which MHOLDA/B is deasserted.

3.5.1.19.MHOLD(A/B)—Memory Holds (inputs)

MHOLDA is used to freeze the clock to both the integer and floating-point units during a cache miss (for systems with
cache memory) or when accessing a slow memory. The processor pipeline is frozen while MHOLDA is asserted and
the TSC691E outputs revert to and maintain the value they had at the rising edge of the clock in the cycle in which
MHOLDA was asserted. This signal is tested on the falling edge (midpoint) of a cycle and must be valid and stable
at the processor for the duration of the specified set–up time prior to the falling edge of CLK.

MHOLDB behaves in the same fashion as MHOLDA, and either can be used to stop the processor during a cache miss
or memory exception. The pipeline is actually frozen by a “final” hold signal that is the logical OR of all hold signals
(MHOLDA, MHOLDB, and BHOLD). All HOLD signals are latched in the TSC691E (transparent latch with clock
high) before they are used.

Note that MHOLD must be driven HIGH while RESET is LOW.

3.5.1.20. RD—Read Access (output)

RD is sent out during the address portion of an access to specify whether the current memory access is a read (RD=1)
or a write (RD=0) operation. RD is set to “0” only during the address cycles of store instructions. For atomic load-store

TSC691E

Rev. H (02 Dec.96)
57MATRA MHS

instructions, RD is “1” during the load address cycle and “0” during the two store address cycles. It is sent out unlatched
by the Integer Unit and must be latched externally before it is used.

RD is used in conjunction with SIZE<1:0>, ASI<7:0>, and LDSTO to determine the type and to check the read/write
access rights of bus transactions. It may also be used to turn off the output drivers of data RAMs during a store operation.

3.5.1.21. SIZE<1:0>—Bus Transaction Size (outputs)

The coding on these pins specifies the size of the data being transferred during an instruction or data fetch. The value
of the size bits during a given cycle relates only to the memory address which appears on pins A<31:0> simultaneously
with the size outputs. It DOEs not apply to data which may be on the data bus during that same cycle.

Size bits are sent out unlatched and must be latched external to the TSC691E before they are used. SIZE<1:0> remains
valid during the data address cycles of loads, stores, load doubles, store doubles, and atomic load-stores. The
SIZE<1:0> pins are three-state (on chip pull_up resistor=20kΩ) when the COE or TOE signal is deaserted. Encoding
of the size bits is shown in Table 42 . For example, during an instruction fetch, SIZE<1:0> is set to “10”, because all
instructions are 32 bits long. For doubleword instructions, SIZE<1:0> is “11” for all data address cycles.

Table 42. SIZE Bit Encoding

SIZE<1> SIZE<0> Data Transfer Type

0 0 Byte

0 1 Halfword

1 0 Word

1 1 Word (Load/Store Double)

3.5.1.22. WE—Write Enable (output)

WE is asserted by the integer unit during the cycle in which the store data is on the data bus. For a store single
instruction, this is during the second store address cycle; the second and third store address cycles of store double
instructions, and the third load-store address cycle of atomic load-store instructions. It is sent out unlatched and must
be latched externally before it is used. To avoid writing to memory during memory exceptions, WE must be externally
qualified by the MHOLDA/B signals.

3.5.1.23. WRT—Advanced Write (output)

WRT is an early write signal, asserted by the processor during the first store address cycle of integer single or double
store instructions, the first store address cycle of floating-point single or double store instructions, and the second
load-store address cycle of atomic load-store instructions. WRT is sent out unlatched and must be latched externally
before it is used.

3.5.1.24. IMPAR—IU to MEC Control Parity (output)

This signal contains the odd parity over the DXFER, LDSTO, LOCK, RD, WE and WRT bits. The parity bit is
generated by the IU and will be checked by the MEC.

It will be high-Z (on chip pull_up resistor=20kΩ) when the COE or TOE signal is deasserted.

3.5.2. Floating-Point/Coprocessor Interface Signals

The IU incorporates a dedicated group of pins that act as direct-connect interfaces between the integer unit and both
the floating-point unit and the coprocessor. Using these connections, no external circuits are required to interface the
IU to the FPU and coprocessor. The interfaces consist of the following signals:

3.5.2.1. CCC<1:0>—Coprocessor Condition Codes (input)

These lines represent the current condition code bits from the Coprocessor State Register (CSR), qualified by the
CCCV signal. When CCCV=1, these bits are valid. During the execution of a CBccc instruction, the processor uses
CCC<1:0> to determine whether or not to take the branch. These bits are latched by the processor before they are used.

TSC691E

Rev. H (02 Dec.96)
58 MATRA MHS

3.5.2.2. CCCV—Coprocessor Condition Codes Valid (input)

This signal is a specialized hold used to synchronize coprocessor compare instructions with coprocessor branch
instructions. It is asserted (the normal condition) whenever the CCC<1:0> bits are valid. A coprocessor would deassert
CCCV (CCCV=0) as soon as a coprocessor compare instruction enters the coprocessor queue, unless an exception is
detected (see Section 3.9). Deasserting CCCV freezes the integer unit pipeline, preventing any further compares from
entering the pipeline. CCCV is reasserted when the compare is completed and the coprocessor condition codes are
valid, thus ensuring that the condition codes match the proper compare instruction. CCCV is latched in the TSC691E
before it is used.

3.5.2.3. CEXC—Coprocessor Exception (input)

CEXC is used to signal the integer unit that a coprocessor exception has occurred. CEXC must remain asserted until
the TSC691E takes the trap and acknowledges the coprocessor exception via the CXACK signal. Although
coprocessor exceptions can occur at any time, they are taken by the TSC691E only during the execution of a subsequent
FPop, a CBfcc instruction, or a coprocessor load or store instruction. A coprocessor implementation should deassert
CHOLD if it detects an exception while CHOLD is asserted. In such a case, CEXC should be asserted one cycle before
CHOLD is deasserted. CEXC is latched in the TSC691E before it is used.

3.5.2.4. CHOLD—Coprocessor Hold (input)

This signal is asserted by the coprocessor if a situation arises in which it cannot continue execution. The coprocessor
checks all dependencies in the decode stage of the instruction and asserts CHOLD (if necessary) in the next cycle. If
the integer unit receives a CHOLD, it freezes the instruction pipeline in the same cycle. Once the conditions causing
the CHOLD are resolved, the coprocessor deasserts CHOLD, releasing the instruction pipeline. CHOLD is latched in
the TSC691E before it is used.

The conditions under which the coprocessor asserts CHOLD are implementation dependent.

3.5.2.5. CINS1—Coprocessor Instruction in Buffer 1 (output)

CINS1 is asserted by the integer unit during the decode stage of the coprocessor instruction that is in the D1 buffer of
the coprocessor chip. The coprocessor uses this signal to begin decoding and execution of the D1 instruction, and to
latch it into its execute-stage register. CINS1 and CINS2 are never asserted in the same cycle.

3.5.2.6. CINS2—Coprocessor Instruction in Buffer 2 (output)

CINS2 is asserted by the Integer Unit during the decode stage of the coprocessor instruction that is in the D2 buffer
of the coprocessor chip. The Coprocessor uses this signal to begin decoding and execution of the D2 instruction, and
to latch it into its execute-stage register. CINS1 and CINS2 are never asserted in the same cycle.

3.5.2.7. FP—Coprocessor Unit Present (input)

When pulled low, FP indicates that a coprocessor is available to the system. It is normally pulled up to VDD through
a resistor, and then grounded by connection to the coprocessor. The integer unit will generate a FP disabled trap if FP=1
during the execution of an FPop, CBfcc, or coprocessor load or store instruction.

3.5.2.8. CXACK—Coprocessor Exception Acknowledge (output)

CXACK is asserted by the integer unit to inform the coprocessor that a trap has been taken for the currently asserted
CEXC signal. Receipt of the asserted CXACK causes the coprocessor to deassert CEXC, which in turn causes the to
deassert CXACK. CXACK is a latched output and should not be latched externally.

3.5.2.9. FCC<1:0>—Floating-Point Condition Codes (input)

These lines represent the current condition code bits from the FPU’s Floating-point State Register (FSR), qualified by
the FCCV signal. When FCCV=1, these bits are valid. During the execution of an FBfcc instruction, the processor uses
FCC<1:0> to determine whether or not to take the branch. These bits are latched by the processor before they are used.

3.5.2.10. FCCV—Floating-Point Condition Codes Valid (input)

This signal is a specialized hold used to synchronize FPU compare instructions with floating-point branch instructions.
It is asserted (the normal condition) whenever the FCC<1:0> bits are valid. The FPU deasserts FCCV (FCCV=0) as
soon as a floating-point compare instruction enters the floating-point queue, unless an exception is detected.

TSC691E

Rev. H (02 Dec.96)
59MATRA MHS

Deasserting FCCV freezes the integer unit pipeline, preventing any further compares from entering the pipeline. FCCV
is reasserted when the compare is completed and the floating-point condition codes are valid, thus ensuring that the
condition codes match the proper compare instruction. FCCV is latched in the TSC691E before it is used.

3.5.2.11. FEXC—Floating-Point Exception (input)
FEXC is used to signal the integer unit that a floating-point exception has occurred. FEXC must remain asserted until
the TSC691E takes the trap and acknowledges the FPU exception via the FXACK signal. Although floating-point
exceptions can occur at any time, they are taken by the TSC691E only during the execution of a subsequent FPop, an
FBfcc instruction, or a floating-point load or store instruction. The FPU deasserts FHOLD if it detects an exception
while FHOLD is asserted. In such a case, FEXC is asserted one cycle before FHOLD is deasserted. FEXC is latched
in the TSC691E before it is used.

3.5.2.12. FHOLD—Floating-Point Hold (input)
This signal is asserted by the FPU if a situation arises in which the FPU cannot continue execution. The FPU checks
all dependencies in the decode stage of the instruction and asserts FHOLD (if necessary) in the next cycle. If the integer
unit receives an FHOLD, it freezes the instruction pipeline in the same cycle. Once the conditions causing the FHOLD
are resolved, the FPU deasserts FHOLD, releasing the instruction pipeline. FHOLD is latched in the TSC691E before
it is used.

An FHOLD is asserted if (1) the FPU encounters an STFSR instruction with one or more FPops pending in the queue,
(2) if either a resource or operand dependency exists between the FPop being decoded and any FPops already being
executed, or (3) if the floating-point queue is full.

3.5.2.13. FIPAR—FPU to IU Control Parity (input)
This signal contains the odd parity over the FCC<1:0>, FCCV,FEXC and FHOLD bits. The parity bit is generated by
the FPU and will be checked by the IU.

3.5.2.14. FINS1—Floating-Point Instruction In Buffer 1 (output)
FINS1 is asserted by the integer unit during the decode stage of the floating-point instruction that is in the D1 buffer
of the floating-point unit. The FPU uses this signal to begin decoding and execution of the D1 instruction, and to latch
it into its execute-stage register. FINS1 and FINS2 are never asserted in the same cycle and both are ignored if (1)
FLUSH is asserted, (2) any HOLD is asserted, or (3) if FCCV or CCCV is deasserted.

3.5.2.15. FINS2—Floating-Point Instruction In Buffer 2 (output)
FINS2 is asserted by the integer unit during the decode stage of the floating-point instruction that is in the D2 buffer
of the floating-point unit. The FPU uses this signal to begin decoding and execution of the D2 instruction, and to latch
it into its execute-stage register. FINS1 and FINS2 are never asserted in the same cycle and both are ignored if (1)
FLUSH is asserted, (2) any HOLD is asserted, or (3) if FCCV or CCCV is deasserted.

3.5.2.16. FLUSH—Floating-Point/Coprocessor Instruction Flush (output)
This signal is asserted by the integer unit whenever it takes a trap. FLUSH is used by the FPU (or coprocessor) to flush
the instructions in its instruction buffers. These instructions, as well as the instructions annulled in the TSC691E’s
pipeline, are restarted after the trap handler is finished. If the trap was not caused by a floating-point (or coprocessor)
exception, instructions already in the floating-point (or coprocessor) queue may continue their execution. If the trap
was caused by a floating-point (or coprocessor) exception, the FP (or FP) queue must be emptied before the FPU
(coprocessor) can resume execution.

3.5.2.17. FP—Floating-point Unit Present (input)
When pulled low, FP indicates that a floating-point unit is available to the system. It is normally pulled up to VDD
through a resistor, and then grounded by connection to the FPU. The integer unit will generate an FP disabled trap if
FP=1 during the execution of an FPop, FBfcc, or floating-point load or store instruction.

3.5.2.18. FXACK—Floating-Point Exception Acknowledge (output)
FXACK is asserted by the integer unit to inform the floating-point unit that a trap has been taken for the currently
asserted FEXC signal. Receipt of the asserted FXACK causes the FPU to deassert FEXC. FXACK is a latched output
and should not be latched externally.

TSC691E

Rev. H (02 Dec.96)
60 MATRA MHS

3.5.2.19. INST—Instruction Fetch (output)

The INST signal is asserted by the integer unit whenever a new instruction is being fetched. It is used by the
floating-point unit or coprocessor to latch the instruction currently on the data bus into an FPU or coprocessor
instruction buffer. SPARC-compatible floating-point units and coprocessors have two instruction buffers (D1 and D2)
to save the last two fetched instructions. When INST is asserted, a new instruction enters buffer D1 and the instruction
that was in D1 moves to buffer D2. INST is a latched output and should not be latched externally.

3.5.2.20. IFPAR—IU to FPU Control Parity (output)

This signal contains the odd parity over the FINS1, FINS2, FLUSH, FXACK and INST bits. The parity bit is generated
by the IU and will be checked by the FPU. It will be high-Z (on chip pull_up resistor=20kΩ) when the TOE signal is
deasserted.

3.5.3. Interrupt and Control Signals

The following signals are used by the integer unit to control and to receive input from external events.

3.5.3.1. ERROR—Error State (output)

This signal is asserted when the integer unit enters the ‘error mode’ state. This happens if a synchronous trap occurs
while traps are disabled (the PSR’s ET bit =0). Before it enters the error mode state, the TSC691E saves the PC and
nPC and sets the trap type (tt) for the trap causing the error mode into the TBR. It then asserts the ERROR signal and
halts. The only way to restart a processor which is in the error mode state is to trigger a reset by asserting the RESET
signal.

3.5.3.2. HWERROR—Hardware error (output)

The HWERROR outputs indicate a parity error occurs, except Master/Checker errors. When asserted low, the IU trap
with Trap Type value depending of the internal parity error (see Table 47 , page 116). It is deasserted when the parity
error is removed (i.e. by resuming this instruction), or by a reset cycle.

3.5.3.3. FLOW —Enable FLOW Control (input)

Forcing this input low will enable the program FLOW control. It is a static signal and shall not change when running.

3.5.3.4. MCERR—Comparison error (output)

This signal is asserted low in checker mode when a comparison error occurs on the internal output signals vis-à-vis
the output signal (excepted TAP, MCERR, HWERROR and ERROR signals) of the master IU. It is deasserted when
the error disappears. See chapter 4.4 for more information.

This signal is also asserted in master mode when the output DOEsn’t match the value of the pin.

This output is high-Z (on chip pull_up resistor=20kΩ) when the TOE signal is deasserted.

3.5.3.5. 601MODE—Normal 601MODE Operation (input)

Forcing this input low will disable the parity checking of all input signals. This means the IU will operate with the
standard input signals. Nevertheless generation and checking of internal parity bit is still active. Parity on the data bus
is generated internally and parity checking on the control bus is disabled.

3.5.3.6. CMODE—checker Mode (input)

Assertion of this signal will set the IU to act as a checker to support master/checker operation. All output signals except
ERROR, HWERROR, MCERR and TAP signals will be high-Z (on chip pull_up resistor=20kΩ). It is a static signal
and shall not change when running. CMODE signal can change when RESET signal is asserted or when the IU is in
HALT mode.

3.5.3.7. FPSYN—Floating-point Synonym Mode (input)

This is a mode signal which will be used to allow execution of additional instructions in future designs. For the
TSC691E, it should be kept grounded.

TSC691E

Rev. H (02 Dec.96)
61MATRA MHS

3.5.3.8. INTACK—Interrupt Acknowledge (output)

INTACK is a latched output that is asserted by the integer unit when an external interrupt is taken, not when it is sampled
and latched.

3.5.3.9. IRL<3:0>—Interrupt Request Level (input)

The state of these pins defines the External Interrupt Level (IRL). IRL<3:0>=0000 indicates that no external interrupts
are pending and is the normal state of the IRL pins. IRL<3:0>=1111 signifies a nonmaskable interrupt. All other
interrupt levels are maskable by the Processor Interrupt Level (PIL) field of the Processor State Register (PSR). The
integer unit uses two on-chip synchronizing latches to sample these signals, and a given level must remain valid for
two consecutive cycles to be recognized. External interrupts should be latched and prioritized by external logic before
they are passed to the TSC691E. Logic must also keep an interrupt valid until it is taken and acknowledged. External
interrupts can be acknowledged by system software or by the TSC691E’s INTerrupt ACKnowledge (INTACK) signal.

3.5.3.10. RESET—Integer Unit reset (input)

Assertion of this signal will reset the integer unit. RESET must be asserted for a minimum of nine processor clock
cycles. After RESET is deasserted, the integer unit starts fetching from address 0. RESET is latched by the TSC691E
before it is used.

The RESET signal input is protected by a glitch removal filter and pulses which are so short that they are detected only
during one clock period are not influencing the IU. RESET signal is also protected with two-rail coding and an error
detected will lead to error mode.

3.5.3.11. TOE—Test Mode Output Enable (input)

When deasserted, this signal will three-state all integer unit output drivers (on chip pull_up resistor=20kΩ). Thus, in
normal operation, this signal should always be asserted (tied to ground). Deassertion of TOE isolates the TSC691E
from the system for debugging purposes.

3.5.3.12. HALT—HALT (input)

When asserted this input will freeze the IU pipeline and the clock. All information placed in the registers of the IU
remains unchanged. By deasserting HALT, execution of the IU will resume. (see 5.2.2.14, page 135)

When the IU is in HALT mode, the TAP is still operating.

3.5.4. TAP signals

The following Test Access Port interface (IEEE standard 1149.1-1990) is used to perform boundary scan for test and
debugging purposes.

3.5.4.1. TCLK—Test Clock (input)

This clock signal permits test data to be shifted into or out of the instruction or test data register cells without interfering
with the on chip system logic.The IEEE standards requires that TCLK can be stopped at 0 indefinitely without causing
any change to the state of the test logic.

3.5.4.2. TRST—TEST reset (input)

The TAP’s test logic is reset when a logical 0 is applied to this port.

3.5.4.3. TMS—Test Mode Select (input)

The TMS input signal is interpreted by the TAP controller to control the test operations.

The received signal is sampled at the rising edge of the TCLK pulses.

3.5.4.4. TDI—Test Data Input (input)

Serial input data applied to this port is fed either into the instruction register or into a test data register, depending on
the sequence previously applied to the TMS input.

The received input data is sampled at the rising edge of the TCLK pulse.

TSC691E

Rev. H (02 Dec.96)
62 MATRA MHS

3.5.4.5. TDO—Test Data Output

Depending on the sequence previously applied to the TMS input, the contents of either the instruction register or the
data register are serially shifted out toward the TDO.

The data out of the TDO is clocked at the falling edge of the TCLK pulses. TDO should be in the inactive state except
when scanning is in progress. (Use of 3 state driver)

3.5.5. Power and Clock Signals

The signals listed below provide clocking and power to the integer unit.

3.5.5.1. CLK—Clock (input)

CLK is a 50%-duty-cycle clock used for clocking the integer unit’s pipeline registers. The rising edge of CLK defines
the beginning of each pipeline stage and a processor cycle is equal to a full clock cycle.

3.5.5.2. VCCO, VCCI, VCCT—Power (inputs)

These pins provide +5V power to various sections of the processor. Power is supplied on three different busses to
provide clean, stable power to each section: output drivers, main internal circuitry, and the input circuits. VCCO pins
supply the output driver bus; VCCI pins supply main internal circuitry bus; and VCCT pins supply the input circuit
bus.

3.5.5.3. VSSO, VSSI, VSST—Ground (inputs)

These pins provide ground return for the power signals. Ground is supplied on three different busses to match the power
signals to each section: VSSO pins for the output driver bus; VSSI pins for the main internal circuitry bus; and VSST
pins for the input circuit bus.

3.6. Pipeline and Instruction Execution Timing

One of the major contributing factors to the TSC691E’s very high performance is an instruction execution rate
approaching one instruction per clock cycle. To achieve that rate of execution, the TSC691E employs a four-stage
instruction pipeline that permits parallel execution of multiple instructions.

Instruction
from Memory

Internally Generated Opcode (IOP)

B
u
f
f
e
r

B
u
f
f
e
r

D
e
c
o
d
e

E
x
e
c
u
t
e

W
r
i
t
e

Figure 24. Processor Instruction Pipeline

TSC691E

Rev. H (02 Dec.96)
63MATRA MHS

A1 A2 A3 A4

CLK

A<31:0>

Fetch

Decode

Execute

Write

Inst 1

Inst 1

Inst 1

Inst 1

Inst 2 Inst 3

Inst 2

Inst 2

Inst 3

Inst 2

Inst 3

Inst 3

Inst 4

Inst 4

Inst 4

Inst 1 Inst 2 Inst 3D<31:0> Inst 4

Figure 25. Pipeline with All Single–Cycle Instructions

3.6.1.Stages

Instruction execution is broken into four stages corresponding to the stages of the pipeline:

2. Fetch—The processor outputs the instruction address to fetch the instruction.

3. Decode—The instruction is placed in the instruction register and decoded. The processor reads the operands from
the register file and computes the next instruction address.

4. Execute—The processor executes the instruction and saves the results in temporary registers. Pending traps are
prioritized and internal traps taken during this stage.

5. Write —If no trap is taken, the processor writes the result to the destination register.

All four stages operate in parallel, working on up to four different instructions at a time. A basic “single-cycle”
instruction enters the pipeline and completes in four cycles. By the time it reaches the write stage, three more
instructions have entered and are moving through the pipeline behind it. So, after the first four cycles, a single-cycle
instruction exits the pipeline and a single-cycle instruction enters the pipeline on every cycle (see Figure 25).

Of course, a “single-cycle” instruction actually takes four cycles to complete, but they are called single cycle because
with this type of instruction the processor can complete one instruction per cycle after the initial four-cycle delay.

3.6.1.1. Internal Opcodes

Instructions that require extra cycles automatically insert internal opcodes (IOPs) into the decode stage as they move
into the execute stage. These internal opcodes are unique to the instruction that generates them. They move all the way
through the pipeline, performing functions specific to the instruction that created them. For example, in Figure 26 ,
the data load in cycle four can be thought of as the fetch for the IOP that starts in cycle three; together they make a
complete four-cycle instruction that balances out the pipeline. JMPL and RETT also generate an IOP, but have no
external data cycle.

Multicycle instructions may generate up to three IOPs to complete execution. Table 43 lists the instructions that
require IOPs and the number generated.

Because instructions continue to be fetched even though IOPs occupy the decode stage, a two-stage prefetch buffer
is used to hold instructions until they can move into the decode stage (see Figure 24). This enables the processor to
fully utilize the data bus bandwidth and still keep the pipeline full. Only two buffers are required because a maximum
of two cycles are available for instruction fetching for any multicycle instruction.

TSC691E

Rev. H (02 Dec.96)
64 MATRA MHS

Table 43. Internally Generated Opcodes

Instruction Number of Internal Opcodes

Single Loads 1

Double Loads 2

Single Store 2

Double Stores 3

Atomic Load-Store 3

Jump 1

Return from Trap 1

3.6.2. Multicycle Instructions

Multicycle instructions are those that take more than four cycles (one bus cycle plus the three pipeline cycles) to
complete. A double-cycle instruction takes five cycles (two bus cycles), a triple-cycle instruction takes six cycles (three
bus cycles), and so on.

In most cases, the extra cycles required by multicycle instructions result from data bus usage (e.g., a data load or store
to memory) that prevents the processor from fetching the next instruction during those cycles. In Figure 26 , the fetch
of instruction Inst 3 is delayed by one cycle for the data load, and in Figure 27 , the store sequence delays the Inst 3
fetch by two cycles.

LD A1 LD A

CLK

A<31:0>

INST

Fetch

Decode

Execute

Write

Inst 2 Load DataInst 1Load

IOP1Load

Load

Load

Inst 3

IOP1

IOP1

Inst 1

Inst 1

Inst 1

Inst 3Inst 2

Inst 2

LD Inst Inst 1 DataD<31:0>

DXFER

 A2

Inst 2

A3

Inst 3

Inst 4

A4

Figure 26. Pipeline with One Double–Cycle Instruction (Load)

TSC691E

Rev. H (02 Dec.96)
65MATRA MHS

A1 A2 ST A ST A

CLK

A<31:0>

WRT

Fetch

Decode

Execute

Write

Inst 2 Tag CheckInst 1Store

IOP1

Store Data Inst 3

IOP1

IOP1

Inst 2Inst 1

Inst 1

ST Inst Inst 1 DataD<31:0>

DXFER

LOCK

Store

Store

Store

IOP2

IOP2

IOP2

A3

RD

INULL

INST

ST

Inst 2 Inst 3

WE

Figure 27. Pipeline with One Triple–Cycle Instruction (Store)

TSC691E

Rev. H (02 Dec.96)
66 MATRA MHS

A1 A2

CLK

A[31:0]

Fetch

Decode

Execute

Write

Inst 2

Inst 3

Inst 1

IOPLd

IOPLd

Inst 2

Inst 1D[31:0]

DXFER

INULL

INST

Load

Load

Load

Load

ÍÍÍÍÍ
ÍÍÍÍÍ

Load Data Inst 3

Inst 2

IOPInt.

IOPInt.

IOPInt. Inst 1

IOPLd Inst 1

Inst 1

A3

Inst 3---

Inst 4

LD LD A A3 A4

Inst 2Inst 1LD Inst Data

Figure 28. Pipeline with Hardware Interlock (Load)

3.6.2.1. Register Interlocks

The pipeline holds several instructions at any given time, so it is possible that an instruction may try to use the contents
of a particular register which is in the process of being updated by a previous instruction. Special bypass paths in the
pipeline of the TSC691E make the correct data available to subsequent instructions for all internal register to register
operations, but cannot solve the problem of loads to the registers from external memory. For this case, interlock
hardware prevents an instruction following a load instruction from reading the register being loaded until the load is
complete (see Figure 28). This also applies to a CALL instruction with a delay slot instruction using r[15] and a JMPL
with a delay slot instruction using the same register specified as the r[rd] of the JMPL. To maximize performance,
compilers and assembly language programmers should avoid loads followed immediately by instructions using the
loaded register’s contents.

3.6.2.2. Branching

The TSC691E’s delayed-control-transfer mechanism allows branches (taken or untaken) to occur without creating a
bubble in the pipeline (see Figure 29). Special parallel hardware enables the processor to evaluate the condition codes
and calculate the effective branch address during the decode stage rather than the execute stage, so that only one delay
instruction is required between the branch and the target instruction (or the next instruction, if the branch is not taken).
See Section 3.4.3.3.1 for a discussion on branching.

If the compiler or programmer cannot place an appropriate instruction in the delay instruction slot, the delay instruction
can be annulled by setting the branch instruction’s a bit. The result is shown in Figure 30 .

TSC691E

Rev. H (02 Dec.96)
67MATRA MHS

CLK

A[31:0]

Fetch

Decode

Write

Target

Inst 3

Delay

Delay

Inst 2

D[31:0]

Branch

Branch

Branch

Inst 1 Inst 2 Inst 4

Inst 1

Inst 1Target

Delay Target

Target

Inst 3

A1

Inst 1

A3Delay A A2Targ A

Br Inst

A4

Execute Branch Delay Inst 1 Inst 2

Br A

Dly Inst Inst 3Inst 2
Targ
 Inst

Figure 29. Pipeline During Branch Instruction

CLK

A[31:0]

Fetch

Decode

Execute

Write

Target

Inst 3

Delay

Annulled

Annulled

Inst 2

Inst 1 Inst 2D[31:0
]

Branch

Branch

Branch

Branch

Inst 1 Inst 2 Inst 4

Inst 2

Inst 1

Inst 1

Inst 1Target

Annulled Target

Target

Inst 3

Inst 3

Targ
Inst

A1 A3 A2Delay A Targ A A4Br A

Dly
nst

Br Inst

Figure 30. Branch with Annulled Delay Instruction

TSC691E

Rev. H (02 Dec.96)
68 MATRA MHS

A1 A2

CLK

A[31:0]

Fetch

Decode

Execute

Write

Inst 2

Inst 0

Inst 1

Inst 1 Inst 2D[31:0]

A2

Inst 1

Inst 1

Inst 0

Inst 3

Inst 1

Inst 1

Inst 0

Inst 0

Inst 1 Inst 1

Inst 0

Inst 2
ÍÍÍÍÍ
ÍÍÍÍÍ
ÍÍÍÍÍ

ÍÍÍÍÍ
ÍÍÍÍÍ
ÍÍÍÍÍ

ÍÍÍÍÍ
ÍÍÍÍÍ
ÍÍÍÍÍ

ÍÍÍÍÍ
ÍÍÍÍÍ
ÍÍÍÍÍInst 0

Inst 0

DOE

AOE

Inst 2

A3

Inst 0

BHOLD

Figure 31. Pipeline Frozen During Bus Arbitration

3.6.3. Pipeline Freezes

Whenever the processor receives an externally generated hold input, such as MHOLDA/B or BHOLD, the instruction
pipeline is frozen. How long it is frozen depends on the type of hold and the external hardware generating the hold.
Figure 31 shows the pipeline frozen by a BHOLD as the result of bus arbitration initiated by another bus master in
the system.

3.6.4. Traps

Figure 32 shows the pipeline operation when an internally generated trap is taken. Instructions in the pipeline after
detection of the trap are annulled and the first instruction of the trap target routine is executed in the fourth cycle
following detection.

3.7. Bus Operation and Timing

This section covers standard and non-standard bus operations. Standard operations include instruction fetch, load
integer, load double integer, load floating-point, load double floating-point, store integer, store double integer, store
floating-point, store double floating-point, atomic load-store unsigned byte, and floating-point operations (FPops).
Non-standard operations include bus arbitration, cache misses, exceptions, and the reset and error conditions.
Coprocessor loads, coprocessor stores, and coprocessor operations are identical in timing to their floating–point
counterpart, and are not repeated as a separate case in this section.

TSC691E

Rev. H (02 Dec.96)
69MATRA MHS

 A2

CLK

A[31:0]

Fetch

Decode

Execute

Write

Inst 1 Inst 2D[31:0]

INULL

Inst 1

Annulled

Annulled

Trap 1

Trap 1

ÍÍÍÍÍ
ÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍ

ÍÍÍÍÍÍ
ÍÍÍÍÍÍ

Inst 0

Annulled

Trap 1

ÍÍÍÍÍÍ
ÍÍÍÍÍÍ

Trap Detected
ÍÍÍÍÍ
ÍÍÍÍÍ
ÍÍÍÍÍ

Trap 2

Trap 2

Trap 2

Trap 1

Trap 3

Trap 3

Trap 4

AnnulledAnnulledAnnulled

A1 Trap A1 Trap A2 Trap A3 Trap A4

Inst 0 Trap 1 Trap 2 Trap 3

INST

FLUSH

Figure 32. Pipeline Operation for Taken Trap (Internal)

Each of the following sections describes a type of bus transaction along with appropriate timing diagrams. The timing
diagrams show multiple instructions being fetched for the pipeline. Instruction addresses are sent out in the cycle before
the instruction fetch. Instruction fetch cycles begin with the instruction address latched by the memory at the beginning
of the fetch cycle and end with the instruction supplied by the memory. Instruction decode begins with the latching
of the instruction at rising clock edge of the cycle after the fetch cycle. If the instruction is multicycle, or execution
requires an interlock, IOPs are inserted into the pipeline at the decode stage and propagate through the pipeline like
a fetched instruction.

The cross-hatched areas shown in the traces are periods in which the signal is not guaranteed to be asserted or
deasserted; in other words, undefined.

In general, signals are valid at the beginning of a cycle, i.e., on the rising edge of the clock. In support of the TSC691E’s
high-speed operation, many signals are sent out unlatched. Refer to Section 3.5 for further details on TSC691E signals.

The processor automatically aligns byte (and halfword) transfers as previously shown in Figure 12 . Figure 33 shows
the relationship between the data transferred during byte, halfword, and word operations and the pins of the data bus.
For byte and halfword data transfers, the TSC691E repeats the byte or halfword on each eight–bit or 16–bit section
of the bus. In other words, the undefined portions of the bus illustrated in Figure 33 are actually a repeat of the data
driven onto the bus. However, this feature is not specified in the SPARC Architecture Reference, and may not be
supported on other SPARC processors.

TSC691E

Rev. H (02 Dec.96)
70 MATRA MHS

CLK

A<31:0>

D<31:24>

X+1 X+2 X+3

D<23:16>

D<15:8>

D<7:0>

X+0

0 0 00SIZE<1:0>

BYTE0

BYTE1

BYTE2

BYTE3

undef.

undef.

undef.

undef.

undef.

undef. undef.

undef.

undef.

undef.undef.

undef.

X = word boundary address

Note1: The parity bit of undef data in/out must match with the data

Byte Data Alignment

CLK

A<31:0>

D<31:16>

X+2 X

D<15:0>

X+0

1 21SIZE<1:0>

HWRD0

HWRD1undef.

undef. HWRD0

HWRD1

Half Word Data Alignment Word Data Alignment

Note2 :This illustration depicts data alignment and is not in-
tended to illustrate a timing case.

Figure 33. Data Bus Contents During Data Transfers

TSC691E

Rev. H (02 Dec.96)
71MATRA MHS

CLK

A<31:0>

D<31:0>

A1 A2

1 2 3 4 5

A3 A4 A5 A6

Inst 0 Inst 1 Inst 2 Inst 3 Inst 4 Inst 5

Figure 34. Instruction Fetch

CLK

A<31:0>

DXFER

A1 A2

1 2 3 4 5 6

D<31:0>

LD A A3 A4

Inst 1 Inst 2 Data Inst 3

LD

LD Inst

INST

Figure 35. Load Single Integer Timing

3.7.1. Instruction Fetch

The instruction fetch cycle is that cycle in which both the instruction address and the data (the instruction itself) are
active on their respective busses (see Figure 34). The instruction address on A<31:0> is actually sent out in the
previous cycle, but is held into the fetch cycle. It should be latched externally. The instruction is returned on the data
bus at the very end of the fetch cycle and is held into the decode cycle. It is latched into the on-chip instruction register
at the beginning of the decode cycle.

3.7.2. Load

Figure 35 shows the timing for a load single integer instruction. Because the bus is used for a data fetch in the fifth
cycle, this is a double-cycle instruction. Note that DXFER is active in the cycle in which the load data address is sent
out, while INST is inactive in the cycle in which the load data is on the data bus.

3.7.3. Load with Interlock

In a load with interlock situation, the instruction following the load tries to use the contents of the load’s destination
register before the load data is available. This requires the insertion of an IOP into the decode stage of the pipeline (see
Section 3.6.5.1) in the fourth cycle, which must be matched by a null bus cycle in the fetch stage to balance the pipeline
(see Figure 36).

TSC691E

Rev. H (02 Dec.96)
72 MATRA MHS

A1 A2

CLK

A[31:0]

Inst 1D[31:0]

DXFER

INULL

INST

A3

Inst 3---

LD LD A A3 A4

Inst 2Inst 1LD Inst

1 2 3 4 5 6

Data

Figure 36. Load Single with Interlock Timing

CLK

A[31:0]

DXFER

LOCK

A1 A2

1 2 3 4 5

D[31:0]

LD 1 LD 2 A3 A4

LD Inst Inst 1 Inst 2 Data 1 Data 2 Inst 3

LD

6

INST

Figure 37. Load Double Integer Timing

3.7.4. Load Double

The timing for a load double integer is shown in Figure 37 . The timing is essentially the same as a load single except
for the additional data fetch in the fifth cycle. That makes load double a triple-cycle instruction. The most-significant
word is fetched in cycle four and the least-significant word in cycle five. Note that the size bits are set to 11 during
the address portion of both loads and that the bus is locked to allow the completion of both loads without interruption.

Load single and load double floating-point instructions look identical to their integer counterparts except that the
FINS1/FINS2 signal is active for floating-point operations.

3.7.5. Store

Store transactions involve more bus activity than loads, as shown in the store single integer timing in Figure 38 . Store
single is a triple-cycle instruction because it includes an extra tag check cycle in which to check an external cache for
the store address. This extra cycle also gives the processor and the memory system time to three-state (on chip pull_up
resistor=20kΩ)the data bus and turn it around for the store. The store address is sent out again in the fifth cycle to
complete the data transfer. Note that the store data is generated by the processor off the falling edge of CLK and is
therefore only available at the very end of the first data cycle.

TSC691E

Rev. H (02 Dec.96)
73MATRA MHS

Note also that INULL is active during the second application of the store address. If there is a cache miss on the tag
check cycle, INULL prevents an additional miss the second time the address is sent out in the store cycle. Because it
is a triple– cycle instruction, LOCK is asserted to retain control of the busses.

CLK

DXFER

LOCK

A1 A2

1 2 3 4 5 6

ST A ST A A3 A4

ST Inst Inst 1 Inst 2 ST Data Inst 3

WRT

INULL

A<31:0>

D<31:0>

ST

RD

WE

INST

Figure 38. Store Single Integer Timing

3.7.6. Store Double

The timing for a store double integer is shown in Figure 39 . The timing is essentially the same as store single except
for the additional store cycle in the sixth cycle, making it a four-cycle instruction. The most-significant word is stored
in cycle five and the least-significant word in cycle six. Note that the size bits are set to 11 during the address portion
of all three data cycles and that the bus is locked to allow the completion of both stores without interruption. INULL
is not active for the address of the least-significant store because there cannot be a miss on this cycle if there wasn’t
one on the tag check cycle, unless the cache line is less than two words.

Store single and store double floating-point instructions look identical to their integer counterparts except that the
FINS1/FINS2 signal is active for floating-point operations.

TSC691E

Rev. H (02 Dec.96)
74 MATRA MHS

CLK

DXFER

LOCK

A1

1 2 3 4 5 6

ST Inst Inst 1 Inst 2 ST D1

WRT

INULL

A<31:0>

D<31:0>

ST D A3ST A2ST A1 ST A1A2

ST D2

RD

WE

INST

Figure 39. Store Double Integer Timing

3.7.7. Atomic Load–Store

Atomic transactions consist of two or more steps which are indivisible; once the sequence begins in the instruction
pipeline, it cannot be interrupted. Because atomic operations are four-cycle instructions, the TSC691E asserts LOCK
for as long as necessary to make sure that no interruption occurs on the bus. Figure 40 applies to the atomic operations
load-store unsigned byte (LDSTUB, LDSTUBA) and word swap (SWAP, SWAPA). Note that, as with any store,
INULL is active on the second occurrence of the store address.

TSC691E

Rev. H (02 Dec.96)
75MATRA MHS

CLK

A<31:0>

DXFER

LOCK

A1 A2

1 2 3 4 5 6

D<31:0>

LD A ST A ST A A3

LDSTO
Inst.

Inst 1 Inst 2 Load
Data

Store Data Inst 3

WRT

INULL

LDSTO

A4

INST

RD

WE

Figure 40. Atomic Load–Store Timing

3.7.8. Floating-Point Operations

The timing for floating-point operations and integer operations is the same except for the addition of the FINS1 and
FINS2 signals in floating-point operations. In this example, Instruction 1 is a floating-point operation (see Figure 41).
FINS1/2 tell the floating-point unit to move an instruction out of its decode buffer and begin execution. The FPU also
makes use of the INST signal to latch instructions into its decode buffers.

TSC691E

Rev. H (02 Dec.96)
76 MATRA MHS

CLK

A<31:0>

1 2 3 4

ASI<7:0>

D<31:0>

SIZE<1:0>

FINS1/FINS2

A2 A3 A4A1

ASIA2 ASIA3 ASIA4ASIA1

Inst 2 Inst 3

10 10 1010

-- FPop

A5

ASIA5

Inst 4

10

Figure 41. Floating–Point Operation Timing

3.7.9. Bus Arbitration

The TSC691E does not have on-chip bus arbitration circuitry because it is designed to operate as a bus slave. Therefore,
external circuitry must arbitrate between external bus requests and the TSC691E. When the TSC691E needs to retain
the busses it asserts the LOCK signal. The arbitration circuitry should assert BHOLD when it needs to keep the
TSC691E off the busses. When BHOLD is asserted, the processor’s instruction pipeline is frozen until it is deasserted.
The arbitration circuitry should also deassert the DOE, AOE, and COE signals to three-state the TSC691E’s address
bus (on chip pull_up resistor=20kΩ), data bus and control signal output drivers so they may be driven by an external
source (see Figure 42).

TSC691E

Rev. H (02 Dec.96)
77MATRA MHS

CLK

A<31:0> A1 A2

1 2 3 4 5 6

DOE

A2

ASIA1 AS–A2 ASIA2ASI<7:0>

D<31:0> Inst 0 Inst 1 --

10 10 10SIZE<1:0>

AOE

COE

A3

ASIA3

Inst 2

10

RD

WE

BHOLD

LDSTO

DXFER

LOCK

WRT

Figure 42. Bus Arbitration Timing

3.7.10. Load with Cache Miss

Figure 43 gives the timing for a load with cache miss. Cache logic must stop the processor by asserting MHOLDA
or MHOLDB in the next cycle. However, the processor stops with the address of the next instruction on the address
bus rather than the instruction that caused the miss. In order to retrieve the proper load data, the memory system needs
the missed address on the bus. To do this the memory system must send an MAO signal, forcing the processor to output
the previous address (the address that was on the bus in the cycle before MHOLD was asserted). The MHOLD signal
must be maintained while the missed data is strobed into the processor with the MDS signal (it must be strobed
externally because the internal processor clock is frozen by the MHOLD).

TSC691E

Rev. H (02 Dec.96)
78 MATRA MHS

CLK

A<31:0> A1

1 2 3 4 5 6

LD A

ASI<7:0>

D<31:0>

SIZE<1:0>

MAO

7

A2 LD A A3 A3 A3

ASIA1 ASILDASIA2 ASILD ASIA3 ASIA3 ASIA3

LD Inst --Inst 1 Inst 2 Data -- Data

10 LD size10 LD size 10 10 10

DXFER

INST

MHOLD

MDS

Figure 43. Load with Cache Miss Timing

3.7.11. Store with Cache Miss

The timing for a store with cache miss is similar to the load with cache miss situation, except that MAO and MDS are
not required (see Figure 44). Because the processor outputs the store address twice, it already has the proper address
on the bus when it’s stopped by MHOLD. MDS is not required because nothing needs to be strobed into the processor.

INULL is asserted for the second occurrence of the store address so that it doesn’t trigger the miss circuitry during the
time the cache is processing the miss on the first occurrence of that address.

TSC691E

Rev. H (02 Dec.96)
79MATRA MHS

CLK

A<31:0> A1

1 2 3 4 5

ASI<7:0>

D<31:0>

SIZE<1:0>

A2 ST A ST A ST A

DXFER

ASIA1 ASIA2 ASIST ASIST ASIST

Inst 0 Inst 1 Inst 2 ST Data

10 10 ST Size ST Size ST Size

LOCK

WRT

INULL

INST

MHOLD

WE

RD

Figure 44. Store with Cache Miss Timing (1 of 2)

TSC691E

Rev. H (02 Dec.96)
80 MATRA MHS

CLK

A<31:0>

6 7 8 9 10

ASI<7:0>

D<31:0>

SIZE<1:0>

DXFER

LOCK

WRT

INULL

A3 A4 A5ST A

ASIA3 ASIA4 ASIA5ASIST

Inst 3 Inst 4ST Data

10 10 10

A6

ASIA6

Inst 5

10ST Size

INST

MHOLD

WE

RD

Figure 45. Store with Cache Miss Timing (2 of 2)

3.7.12. Load/Store instruction with Trap

Figure 46 gives the timing for a load instruction with a trap taken. This timing is similar for the load double, for the
load-store, for the store and for the swap instructions.

TSC691E

Rev. H (02 Dec.96)
81MATRA MHS

CLK

A<31:0>

DXFER

A1 A2

1 2 3 4 5 6

D<31:0>

LD A

Inst 1 Inst 2 ----

LD

LD Inst

INST

INULL

FLUSH

Trap A1 Trap A2

Trap 1

Figure 46. Ld, LdSt, St and Swap Inst with Trap Taken

3.7.13. Memory Exceptions

Load with memory exception timing is shown in Figure 48 . As with a cache miss, memory logic must stop the
processor by asserting MHOLDA or MHOLDB in the next cycle. The MHOLD signal must be maintained while the
memory exception (MEXC) signal is strobed into the processor with the MDS signal (it must be strobed in externally
because the internal processor clock is frozen by the MHOLD). MEXC must be deasserted in the same clock cycle in
which MHOLD is deasserted. Note that INULL is asserted in the cycle 8 instruction fetch to annul that fetch. This is
the same action shown in cycle 2 of Figure 32 for an internal trap. Store with memory exception has the same timing
(see Figure 52) except INULL is asserted from the second store address through to the annulled cycle 8 instruction
fetch.

TSC691E

Rev. H (02 Dec.96)
82 MATRA MHS

CLK

A<31:0> A1

1 2 3 4 5

ASI<7:0>

D<31:0>

SIZE<1:0>

A2 LD A A3 A3

DXFER

ASIA1 ASIA2 ASILD ASIA3 ASIA3

LD Inst Inst 1 Inst 2

10 10 10LD size 10

MEXC

INULL

Data -- -

FLUSH

MHOLD

MDS

INST

Figure 47. Load with Memory Exception Timing (1 of 2)

TSC691E

Rev. H (02 Dec.96)
83MATRA MHS

CLK

A<31:0>

6 7 8 9

ASI<7:0>

D<31:0>

SIZE<1:0>

INULL

A4 A TB A T1A3

ASIA4 ASITB ASIT1ASIA3

-- TB Inst

10 10 1010

-- -- --

MDS

MEXC

FLUSH

MHOLD

INST

R17 = ADD (LD Inst)
R18 = ADD (LD Inst) + 4

DXFER

Figure 48. Load with Memory Exception Timing (2 of 2)

TSC691E

Rev. H (02 Dec.96)
84 MATRA MHS

CLK

A<31:0> A1

1 2 3 4 5

D<31:0>

A2 IAE A3 A3

Inst 0 Inst 2

MEXC

INULL

I_fail -- -

FLUSH

MHOLD

MDS

INST

Inst 1

CLK

A<31:0>

6 7 8 9

D<31:0>

INULL

A4 A5 Trap 1A3

Inst4 ----- -- Inst3

MDS

MEXC

FLUSH

MHOLD

INST

R17 = IAE
R18 = A3

Trap 1

Trap 2

Figure 49. Instruction Memory Access Exception Timing

TSC691E

Rev. H (02 Dec.96)
85MATRA MHS

CLK

A<31:0> LD

1 2 3 4 5

D<31:0> Inst 0

MEXC

INULL

-- -

FLUSH

MHOLD

MDS

INST

LD

CLK

A<31:0>

6 7 8 9

D<31:0>

INULL

A3 A4 A5

-- --

MDS

MEXC

FLUSH

MHOLD

INST

R17 = IAE
R18 = A3

DXFER

DXFER

10

TRAP

LD addLD add

LD add

Data Inst 3 Inst45 ---

A1

Inst 1

IAE

I fail

Figure 50. Instruction Memory Access Exception Timing (LD in Execute stage)

TSC691E

Rev. H (02 Dec.96)
86 MATRA MHS

CLK

A<31:0> A1

1 2 3 4 5

ASI<7:0>

D<31:0>

SIZE<1:0>

A2 ST A ST A ST A

DXFER

ASIA1 ASIA2 ASIST ASIST ASIST

ST Inst Inst 1 Inst 2 ST Data

10 10 ST Size ST Size ST Size

LOCK

WRT

INULL

MDS

MEXC

INST

MHOLD

WE

RD

FLUSH

Figure 51. Store with Memory Exception Timing (page 1 of 2)

TSC691E

Rev. H (02 Dec.96)
87MATRA MHS

CLK

A<31:0>

6 7 8 9

ASI<7:0>

D<31:0>

SIZE<1:0>

DXFER

LOCK

WRT

INULL

A TB A T1ST A

ASIA3 ASITB ASIT1ASIST

--- TB InstST Data

10 10 10ST Size

MDS

MEXC

INST

MHOLD

WE

RD

A3

FLUSH

R17 = Add Store
R18 = Add Store + 4

Figure 52. Store with Memory Exception Timing (page 2 of 2)

TSC691E

Rev. H (02 Dec.96)
88 MATRA MHS

CLK

A<31:0> A1

1 2 3 4 5

ASI<7:0>

D<31:0>

SIZE<1:0>

A2 ST A ST A ST A

DXFER

ASIA1 ASIA2 ASIST ASIST ASIST

ST Inst Inst 1 Inst 2 ST Data

10 10 ST Size ST Size ST Size

LOCK

WRT

INULL

MDS

MEXC

INST

MHOLD

WE

RD

FLUSH

Figure 53. Store double with Memory Exception on 1st data address (page 1 of 2)

TSC691E

Rev. H (02 Dec.96)
89MATRA MHS

CLK

A<31:0>

6 7 8 9

ASI<7:0>

D<31:0>

SIZE<1:0>

DXFER

LOCK

WRT

INULL

A TB A T1ST A

ASI St ASITB ASIT1ASIST

--- TB InstST Data

10 10 10ST Size

MDS

MEXC

INST

MHOLD

WE

RD

FLUSH

R17 = Add Store
R18 = Add Store + 4

ST A+4

Figure 54. Store double with Memory Exception on 1st data address (page 2 of 2)

TSC691E

Rev. H (02 Dec.96)
90 MATRA MHS

CLK

A<31:0> A1

1 2 3 4 5

ASI<7:0>

D<31:0>

SIZE<1:0>

A2 ST A1 ST A1 ST A2

DXFER

ASIA1 ASIA2 ASIST ASIST ASIST

ST Inst Inst 1 Inst 2

10 10 ST Size ST Size

LOCK

WRT

INULL

MDS

MEXC

INST

MHOLD

WE

RD

FLUSH

A3

ASIA3

Store DATA Inst 3

ST Size ST Size

Figure 55. Store double with Memory Exception on 2nd data address (page 1 of 2)

TSC691E

Rev. H (02 Dec.96)
91MATRA MHS

CLK

A<31:0>

6 7 8 9

ASI<7:0>

D<31:0>

SIZE<1:0>

DXFER

LOCK

WRT

INULL

A TB A T1A3

ASIA4 ASITB ASIT1ASI A3

-- TB InstInst 3

10 10 1010

MDS

MEXC

INST

MHOLD

WE

RD

A4

FLUSH

R17 = Add Store
R18 = Add Store + 4

Figure 56. Store double with Memory Exception on 2nd data address (page 2 of 2)

TSC691E

Rev. H (02 Dec.96)
92 MATRA MHS

CLK

FEXC

FXACK

FLUSH

Figure 57. Floating–Point Exception Handshake Timing

CLK

A<31:0>

D<31:0>

A1 A2

1 2 3 4 5

A3 A4 T0 T1

Inst 0 Inst 1 Inst 2 Inst 3 Inst 4 Trap 0

IRL<3:0>

INTACK

0 H Interrupt Asserted

6

Don’t care until RETT

Figure 58. Asynchronous Interrupt Timing

3.7.14. Floating-Point Exceptions

The floating–point unit asserts FEXC to notify the TSC691E that a floating-point exception has occurred and that it
should take a trap on the next floating-point instruction that it encounters in the instruction stream (see Figure 57).
The TSC691E asserts FXACK to signal the FPU that the trap is being taken, and FLUSH to clean out the FPU’s decode
buffers. From this point on, the FPU will execute only floating-point store queue instructions until its queue is emptied
by the trap handler.

FEXC is deasserted by the FPU after FXACK is asserted. FXACK is deasserted by the TSC691E after FEXC is
deasserted.

3.7.15. Interrupts

The asynchronous IRL<3:0> inputs are sampled on the rising edge of every clock. If the interrupt value represented
by those inputs is greater than the masking value in the processor, and no higher priority trap supersedes it, the
TSC691E will take the interrupt. The IRL input level should be held stable until the processor asserts INTACK.When
the trap is taken, IRL line are ignored until ET=0 (until RETT instruction is executed). Figure 58 shows the timing

TSC691E

Rev. H (02 Dec.96)
93MATRA MHS

for the best case response time where the IRL input value is asserted one clock and a set–up time before the execute
stage of a single-cycle instruction. Refer to Section 3.8.3 for more information on interrupts.

CLK

A<31:0>

ASI<7:0>

D<31:0>

SIZE<1:0>

0000 H A1

09 H ASI 1

-- Inst 0

10 10

RESET

0000 H

09 H

--

10

MHOLD

MAO

INULL

Figure 59. Power–On Reset Timing

3.7.16. Reset Condition

Figure 59 shows the timing for a power-on reset. RESET must be asserted for at least nine cycles so that the processor
can synchronize the reset input and initialize its internal state. For RESET to be synchronized, the CLK signal must
be active.

During the initialization, the processor disables traps (ET=0), sets the supervisor mode (S=1), and sets the program
counter to location zero (PC=0, nPC=4).

3.7.17. Error Condition

error mode is one of the three states in which the TSC691E can exist. To get into this error mode, a synchronous trap
must occur while traps are disabled (the processor state register’s ET bit is set to zero). This essentially means that a
trap which cannot be ignored occurs while another trap is being serviced. In order for that synchronous trap to be
serviced, the processor goes through the normal operations of a trap (see Section 3.8), including setting the tt bits to
identify the trap type. It then enters error mode, halts, and asserts the ERROR signal (see Figure 60).

The only way to leave error mode is to receive an external RESET signal, which forces the processor into reset mode.
All information placed in the TSC691E’s registers from the last execute mode (the trap operation) remains unchanged
and the processor resumes operation at address zero. The reset trap handler can examine the trap type of the
synchronous trap and deal with it accordingly.

TSC691E

Rev. H (02 Dec.96)
94 MATRA MHS

CLK

D<31:0>

1 2 3 4 5

 RESET must be asserted for a minimum of 9 clocks

ERROR

RESET*

T.Ints

A<31:0>
A.Ints
+4

Trap Add Trap Add + 4

INST

INULL

FLUSH

6 7

*

*

* If T.Inst is a control transfert instruction

T.Inst = Traping Instruction

Figure 60. Error/Reset Timing

CLK

D<31:0
>

1 2 3 4

ERROR

RESET*

A<31:0>

INST

INULL

FLUSH

8 9(continued)

A=0000 H, SIZE=01 0004 HTrap Add + 4

Inst 0----

ASI ASI=09 HASI

TSC691E

Rev. H (02 Dec.96)
95MATRA MHS

Table 44. Externally Generated Synchronous Exception Traps

Trap Initiating Signal Condition

Data Access Exception MEXC Memory error during data access

Instruction Access Exception MEXC Memory error during instruction access

Floating–Point Exception FEXC Floating–point unit error

Coprocessor Exception CEXC Coprocessor unit error

3.8. Exception Model

The TSC691E supports three types of traps: synchronous, floating-point/coprocessor, and asynchronous (also called
interrupts). Synchronous traps are caused by hardware responding to a particular instruction or by the Trap on integer
condition code (Ticc) instructions; they occur during the instruction that caused them.

Floating–point/coprocessor traps caused by a Floating-Point-operate (FPop) or CoProcessor-operate (CPop)
instruction occur before that instruction is complete. However, because floating–point (and coprocessor) exceptions
are pended until the next floating–point (coprocessor) instruction is executed, other non-floating-point (coprocessor)
instructions may have executed before the trap is taken.

Asynchronous traps occur when an external event interrupts the processor. They are not related to any particular
instruction and occur between the execution of instructions. See Section 3.8.3.

3.8.1. Reset

The reset trap is a special case of the external asynchronous trap type. It is asynchronous because it is triggered by
asserting the RESET input signal. But from that point on, its behavior is entirely different from that of an asynchronous
interrupt (see Section 3.8.3).

As soon as the TSC691E recognizes the RESET signal, it enters reset mode and stays there until the RESET line is
deasserted. The processor then enters execute mode and then the execute trap procedure. Here, it deviates from the
normal action of a trap (Section 3.8.5) by modifying the enable traps bit (ET=0), and the supervisor bit (S=1). It then
sets the PC to 0 (rather than changing the contents of the TBR), the nPC to 4, and transfers control to location 0. All
other PSR fields, and all other registers retain their values from the last execute mode.

Note : Upon power-up reset the state of all registers other than the PSR are undefined.

If the processor got to reset mode from error mode, then the normal actions of a trap have already been performed,
including setting the tt field to reflect the cause of the error mode. Because this field is not changed by the reset trap,
a post-mortem can be conducted on what caused the error mode. The processor enters error mode whenever a
synchronous trap occurs while traps are disabled.

3.8.2. Synchronous Traps

Synchronous traps are caused by the actions of an instruction, with the trap stimulus occurring either internally to the
TSC691E or from an external signal which was provoked by the instruction. These traps are taken immediately and
the instruction that caused the trap is aborted before it changes any state in the processor.

A new type of trap has been added: Hardware traps. This trap occurs when a hardware error (i.e. SEU[1] on register)
is detected by the IU. The trap type depends of the internal parity error (see Table 47 , page 116). In case of hardware
traps the HWERROR signal is asserted low.

The external signals that can cause a synchronous trap are listed in Table 44 .

3.8.2.1. External Signals

Synchronous traps generated by the input signal MEXC (Memory Exception) occur during the execute phase of an
instruction or occur immediately for data accesses. Traps generated by the FEXC and CEXC signals belong to the
special floating-point/coprocessor category, and may not occur immediately.

Note 1 : SEU = Single Event Upset, a flip of register or memory cells, forced by heavy ions.

TSC691E

Rev. H (02 Dec.96)
96 MATRA MHS

3.8.2.2. Hardware error

When a hardware error is detected, the trap handling routine saves the error information which the MEC has sampled.

The trap routine then resumes the instruction by returning from the trap routine. If the cause of the error was a transient
fault, it may be removed by just resuming the instruction. If the error was caused by a fault that is not removable by
resuming the instruction, another hardware error trap is generated and the trap handling routine propagates the error
to a higher level of the application.

If the fault is in a critical register or latch which the trap handling routine uses, another hardware error trap is generated.
A synchronous trap during the time when traps are disabled is a critical error and the IU enters the error mode and halts.

This means that the error detection mechanism has to detect the error when the faulty instruction is in the execute stage
in order to handle the trap normally, i.e. correct PC for the faulty instruction.

When an error trap occurs, the HWERROR signal is asserted (see Table 47 , page 116).

3.8.2.3. Instruction access exception

An instruction access exception trap is generated if a memory exception occurs (the MEXC input signal is asserted)
during an instruction fetch.

3.8.2.4. Data access exception

A data access exception trap is generated if a memory exception occurs (the MEXC input signal is asserted) during
the data cycle of any instruction that moves data to or from memory.

3.8.2.5. Internal/Software

Synchronous traps generated by internal hardware are associated with an instruction. The trap condition is detected
during the execute stage of the instruction and the trap is taken immediately, before the instruction can complete.

3.8.2.6. Illegal instruction

An illegal instruction trap occurs:
� when the UNIMP instruction is encountered,

� when an unimplemented instruction is encountered (excluding FPops and CPops),

� in any of the situations below where the continued execution of an instruction would result in an illegal processor
state:

1. Writing a value to the PSR’s CWP field that is greater than the number of implemented windows (with a
WRPSR)

2. Executing an Alternate Space instruction with its i bit set to 1

3. Executing a RETT instruction with traps enabled (ET=1)

4. Executing an IFLUSH instruction with IFT=0

Unimplemented floating-point and unimplemented coprocessor instructions do not generate an illegal instruction trap.
They generate fp exception and cp exception traps, respectively.

Floating-point instructions are coded with : op=10 & op3=11010x

Coprocessor instructions are coded with : op=10 & op3=11011x

The IU decodes the fields op and op3 and generates FINS’s or CINS’s even if the instruction is unimplemented.

3.8.2.7. Privileged instruction

This trap occurs when a privileged instruction is encountered while the PSR’s supervisor bit is reset (S=0).

3.8.2.8. Fp disabled

A fp disabled trap is generated when an FPop, FBfcc, or floating-point load/store instruction is encountered while the
PSR’s EF bit =0, or if no FPU is present (FP input signal =1).

3.8.2.9. Cp disabled

A cp disabled trap is generated when a CPop, CBccc, or coprocessor load/store instruction is encountered while the
PSR’s EC bit =0, or if no coprocessor is present (CP input signal =1).

TSC691E

Rev. H (02 Dec.96)
97MATRA MHS

3.8.2.10. Window overflow

This trap occurs when the continued execution of a SAVE instruction would cause the CWP to point to a window
marked invalid in the WIM register.

3.8.2.11. Window underflow

This trap occurs when the continued execution of a RESTORE instruction would cause the CWP to point to a window
marked invalid in the WIM register. The window underflow trap type can also be set in the PSR during a RETT
instruction, but the trap taken is a reset. See Section 3.8.1 on reset traps and SPARC V7.0 Instruction Set for the
instruction definition for RETT.

3.8.2.12. Memory address not aligned

Memory address not aligned trap occurs when a load or store instruction generates a memory address that is not properly
aligned for the data type or if a JMPL instruction generates a PC value that is not word aligned (low-order two bits
nonzero).

3.8.2.13. Tag overflow

This trap occurs if execution of a TADDccTV or TSUBccTV instruction causes the overflow bit of the integer condition
codes to be set. See the instruction definitions of TADDccTV and TSUBccTV and Section 3.4.3.2.3 for details.

3.8.2.14. Trap instruction

This trap occurs when a Ticc instruction is executed and the trap conditions are met. There are 128 programmable trap
types available within the trap instruction trap (see SPARC V7.0 Instruction Set, Ticc instruction).

TSC691E

Rev. H (02 Dec. 96)
98 MATRA MHS

3.8.3. Interrupts (Asynchronous Traps)

Asynchronous traps occur in response to the Interrupt Request Level (IRL<3:0>) inputs. This type of trap is not
associated with an instruction and is said to happen between instructions. This is because, unlike synchronous traps,
an interrupt allows the instruction in whose execute stage it is prioritized to complete execution (see Figure 61). Any
instruction that has entered the pipeline behind the instruction which was allowed to complete is annulled, but can be
restarted again after returning from the trap.

3.8.3.1. Priority

The level, or priority, of the interrupt is determined by the value on the IRL<3:0> pins. For the interrupt to be taken,
the IRL value must be greater than the value in the Processor Interrupt Level (PIL) field of the Processor State Register
(PSR). A value of 0 indicates that no interrupt is requested. A value of 15 represents a non-maskable interrupt. All other
IRL values between 0 and 15 represent interrupt requests which can be masked by the PIL field. The priority and trap
type (tt) for each level is shown in Table 45 .

Fetch

Decode

Execute

Write

Inst 2

Trap 1

Trap 1

Trap 2

AnnulledInst 1

Sampled
Latched

Taken
Prioritized

IRL<3:0>

INTACK

Annulled

Annulled

Inst 3

Inst 2 -> r17

Inst 1 Inst 2

Inst 1

Inst 3 -> r18 ÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍ

ÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍ

ÍÍÍÍ

Annulled

Annulled

Annulled

Inst 4

Figure 61. Best–Case Interrupt Response Timing (one cycle instruction)

Fetch

Decode

Execute

Write

ÍÍÍ
ÍÍÍ

ÍÍÍ
ÍÍÍ
ÍÍÍ

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

Trap 1

Trap 1

Trap 2 Trap 3

Sampled
Latched

Taken
Prioritized

IRL<3:0>

INTACK

Annulled

Inst 2Inst 1

Load

Load

IOP1

Load

IOP1

IOP1

Load
Data

Inst 3 Trap 1

Inst 1

Inst 1

Annulled

Inst 2

Annulled Annulled

Annulled Annulled

Tag
Check

IOP1

IOP1

IOP2

Trap 1

-> r17 -> r18
Load

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

Figure 62. Double Cycles Instruction Interrupt Response Timing (ex: Load)

TSC691E

Rev. H (02 Dec. 96)
99MATRA MHS

Fetch

Decode

Execute

Write

ÍÍÍ
ÍÍÍ

ÍÍÍ
ÍÍÍ
ÍÍÍ

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ

Trap 1

Trap 1

Trap 2 Trap 3

Sampled
Latched

Taken
Prioritized

IRL<3:0>

INTACK

Annulled

Inst 2Inst 1

Store

Store

IOP1

Store

IOP1

IOP1

Tag
Check

IOP2

Store
Data

Inst 3 Trap 1

IOP2

IOP2

Inst 1

Inst 1

Annulled

Inst 2

Annulled Annulled

Annulled Annulled

Tag
Check

IOP1

IOP1

IOP2

Trap 1

-> r17 -> r18

Store ÍÍÍ
ÍÍÍ
ÍÍÍ

Figure 63. Triple-Cycles Instruction Interrupt Response Timing (ex: Store)

Fetch

Decode

Execute

Write

ÍÍÍ
ÍÍÍ
ÍÍÍ

ÍÍÍ
ÍÍÍ
ÍÍÍ

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍÍÍÍ

ÍÍÍ

Trap 1

Trap 1

Trap 2 Trap 3

Sampled
Latched

Taken
Prioritized

IRL<3:0>

INTACK

Annulled

Inst 2Inst 1

Store
double

Store
double

IOP1

Store
double

IOP1

IOP1

Tag
Check

IOP2

Store
D1

Store
D2

Inst 3 Trap 1

IOP2

IOP2

IOP3

IOP3

IOP3

Inst 1

Inst 1

Annulled

Inst 2

Annulled Annulled

Annulled Annulled

Tag
Check

IOP1

IOP1

IOP2

Trap 1

-> r17 -> r18

Store
double

Figure 64. Four-Cycles Instruction Interrupt Response Timing (Store Double)

3.8.3.2. Response Time

The TSC691E samples the IRL inputs at the rising edge of every clock. In order to properly synchronize these
asynchronous inputs, they are put through two synchronizing levels of D-type flip-flops. The outputs of the two levels
must agree before the interrupt can be processed. If the outputs disagree, the interrupt request is ignored. This logic
serves to filter transients on the IRL lines, but it means that the lines must be active for two consecutive clock edges
to be accepted as valid.

Once the IRL input has been accepted, it is prioritized and the appropriate trap is taken during the next execute stage
of the instruction pipeline. Best case interrupt response occurs when the interrupt is applied one clock plus one setup
time before the execute phase of any instruction in the pipeline (see Figure 61). In this case, the first instruction of
the interrupt service routine is fetched during the fifth clock following the application of an IRL value greater than the
PIL field of the processor status register (PSR). This also holds for an IRL value of 0FH, which acts as a non–maskable
interrupt.

The worst case interrupt response occurs when the detection of the IRL input just misses the cutoff point for the execute
stage of a four-cycle instruction, such as a store double or atomic load-store (see Figure 63). In this case, the interrupt

TSC691E

Rev. H (02 Dec. 96)
100 MATRA MHS

input must wait an additional three cycles for the next pipeline execute phase. In addition, if the IRL input just misses
the sampling clock edge, an additional clock delay occurs. As a result, the first instruction of the service routine is
fetched in the eighth clock following the application of IRL.

The best and worst case interrupt timing described above assumes that the processor is not stopped via the application
of an external hold signal, and that the IRL input is not superceded by the occurrence of a synchronous (internal) trap.

3.8.3.2.1. Instruction Response Time on conditional branch instruction (CBI)

When the instruction present in the decode stage during sampling of IRL<3:0> is a CBI, the response time is the same
than described in Figure 61 except when the delay instruction is annulled:

1_ BA, FBA, and CBA with annul bit = 1 (B*A,a)

2_ Bicc, FBicc, and CBicc not taken with annul bit = 1 (B*cc,aNT)

For those two cases, the INTACK signal and the first instruction of the interrupt service routine will be valid one cycle
later (see Figure 65 , page 106).

Fetch

Decode

Execute

Write

Trap 1

Trap 1

Trap 2

CBI

Sampled
Latched

Taken
Prioritized

IRL<3:0>

INTACK

Annulled

Delay Inst

CBI

CBI

Target

ÍÍÍ
ÍÍÍ

ÍÍÍÍÍ
ÍÍÍÍÍ
ÍÍÍÍÍ

ÍÍÍÍÍ
ÍÍÍÍÍ

Inst 1

Inst 1

Annulled

Annulled

Annulled

Annulled

Annulled

Target

Target

Inst 2

Annulled

Annulled

Annulled

-> R17 -> R18

Figure 65. Interrupt Response Timing on conditional branch instruction (B*A,a & B*cc,aNT)

3.8.3.3.Interrupt Acknowledge

As shown in Figure 61 ,Figure 65 and more clearly in Figure 63 , the INTerrupt ACKnowledge (INTACK) output
signal is asserted when the interrupt is taken, not when it is first detected and latched. Because of this delay, if the
IRL<3:0> inputs are changed to reflect another interrupt condition before the corresponding INTACK for the latched
condition is received, there could be some question as to which interrupt the INTACK is responding to. Therefore,
external hardware should ensure that the IRL<3:0> inputs are held stable until an INTACK is received.

When trap is taken the PC and nPC are saved into r[17] and r[18] respectively see Figure 61 , Figure 63 and
Figure 65 .Care must be taken in case of Response Timing on conditional branch instruction (B*A,a & B*cc,aNT),
the PC value of inst1 instead of the Delay Instruction is saved in r17. If Branch is taken, r17 and r18 contain the 2 first
addresses of the branch routine.

For the Best–Case Interrupt Response Timing (Figure 61), r18 contains the value of the first address of the branch
routine if inst1 if a Branch instruction (different than B*A,a & B*cc,aNT).

3.8.4. Floating-Point/Coprocessor Traps

Floating-point/coprocessor exception traps are considered a separate class of traps because they are both synchronous
and asynchronous. They are asynchronous because they are triggered by an external signal (FEXC or CEXC), and are
taken sometime after the floating-point or coprocessor instruction that caused the exception. This can happen because
the TSC691E and the FPU (coprocessor) operate concurrently. However, they are also synchronous, because they are

TSC691E

Rev. H (02 Dec. 96)
101MATRA MHS

tied to an instruction—the next floating-point or coprocessor instruction encountered in the instruction stream after
the signal is received.

When the FPU (coprocessor) recognizes an exception condition, it enters an “exception pending mode” state. It
remains in this state until the TSC691E signals that it has taken an fp exception (cp exception) trap by sending back
an FXACK (CXACK) signal. The FPU (coprocessor) then enters the “exception mode” state, remaining there until
the floating-point (coprocessor) queue has been emptied by execution of one or more STDFQ (STDCQ) instructions.

Although the PC will always point to a floating-point or coprocessor instruction after an exception trap is taken, it
doesn’t point to the instruction that caused the exception. However, the instruction that did cause the exception is
always the front entry in the queue at the time the trap is taken, and the entry includes both the instruction and its
address. The remaining entries in the queue point to FPops (CPops) that have been started but have not yet completed.
Once the queue has been emptied, these can be re-executed or emulated.

3.8.4.1. Floating-Point Exception

This trap occurs when the FPU is in exception pending mode and an FPop, FBfcc, or floating-point load/store
instruction is encountered. The type of exception is encoded in the tt field of the Floating-point State Register (FSR).

3.8.4.2. Coprocessor Exception

This trap occurs when the Coprocessor is in exception pending mode and a CPop, CBccc, or coprocessor load/store
instruction is encountered. The type of exception should be encoded in the tt field of the Coprocessor State Register
(CSR). The nature of the exception is implementation dependent.

3.8.5. Trap Operation

Once a trap is taken, the following operations take place:

� Further traps are disabled (asynchronous traps are ignored; synchronous traps force an error mode).

� The S bit of the PSR is copied into the PS bit; the S bit is then set to 1.

� The CWP is decremented by one (modulo the number of windows) to activate a trap window.

� The PC and nPC are saved into r[17] and r[18], respectively, of the trap window.

� The tt field of the TBR is set to the appropriate value.

� If the trap is not a reset, the PC is written with the contents of the TBR and the nPC is written with TBR + 4. If the
trap is a reset, the PC is set to address zero and the nPC to address four.

Unlike many other processors, the SPARC architecture does not automatically save the PSR into memory during a trap.
Instead, it saves the volatile S bit into the PSR itself and the remaining fields are either altered in a reversible manner
(ET and CWP), or should not be altered in the trap handler until the PSR has been saved to memory.

3.8.5.1. Recognition

In most cases, traps are “recognized” in the pipeline’s execute stage. For a synchronous trap, the trap criteria are
examined during the execute stage of an instruction, and the trap is taken immediately, before the write stage of that
instruction takes place. This includes the fp disabled and cp disabled trap type. The special cases occur with those traps
generated by external signals. A memory exception on an instruction fetch is detected at the beginning of the execute
stage of instruction execution. Memory exceptions occurring on data accesses are detected on the rising clock edge
of the data cycle.

Because asynchronous traps happen “between” instructions, their timing is slightly different. As long as the ET bit is
set to one, the TSC691E checks for interrupts. The interrupt is sampled on a rising clock edge and latched on the next
rising clock edge. The processor compares the IRL<3:0> input value against the PIL field of the PSR, and if IRL is
greater than PIL, or IRL is 15 (unmaskable), then it is prioritized at the end of the next execute stage of the pipeline.
A trap keyed to the IRL level occurs after the write stage completes.

Floating-point/coprocessor exception traps are not recognized when the FEXC or CEXC signal is first sampled. The
processor waits until it encounters a floating-point or coprocessor instruction in the instruction stream and then handles
it as if it were an internal synchronous trap.

TSC691E

Rev. H (02 Dec. 96)
102 MATRA MHS

3.8.5.2. Trap Addressing

The Trap Base Register (TBR) is made up of two fields, the Trap Base Address (TBA) and the trap type (tt). The TBA
contains the most-significant 20 address bits of the trap table, which is in external memory. The trap type field, which
was written by the trap, not only uniquely identifies the trap, it also serves as an offset into the trap table when the TBR
is written to the PC. The TBR address is the first address of the trap handler. However, because the trap addresses are
only separated by four words (the least-significant four bits of TBR are zero), the program must jump from the trap
table to the actual address of the particular trap handler.

Of the 256 trap types allowed by the 8-bit tt field, half are dedicated to hardware traps (0-127), and half are dedicated
to programmer-initiated traps (Ticc). For a Ticc instruction, the processor must calculate the tt value from the fields
given in the instruction, while the hardware traps can be set from a table such as the one below. See the Ticc instruction
definition for details.

The tt field remains valid until another trap occurs.

3.8.5.3. Trap Types and Priority

Each type of trap is assigned a priority (see Table 45). When multiple traps occur, the highest priority trap is taken,
and lower priority traps are ignored. In this situation, a lower priority trap must either persist or be repeated in order
to be recognized and taken.

Table 45. Trap Type and Priority Assignments

Trap Priority Trap Type (tt) Synchronous or Asynchronous

Reset 1 - Async.

Hardware error 2[1] 97-102 Sync.

Instruction Access 3[1] 1 Sync.

Illegal Instruction 4[1] 2 Sync.

Privileged Instruction 5[1] 3 Sync.

Floating–Point Disabled 6[1] 4 Sync.

Coprocessor Disabled 6[1] 36 Sync.

Window Overflow 7[1] 5 Sync.

Window Underflow 7 6 Sync.

Memory Address not Aligned 8 7 Sync.

Floating–Point Exception 9 8 Sync.

Coprocessor Exception 9 40 Sync.

Data Access Exception 10 9 Sync.

Tag Overflow 11 10 Sync.

Trap Instructions (Ticc) 12 128 - 255 Sync.

Note 1: the priority of those traps have changed in relation to the 90C601.

TSC691E

Rev. H (02 Dec. 96)
103MATRA MHS

Table 46. Trap Type and Priority Assignments (continued)

Trap Priority Trap Type (tt) Synchronous or Asynchronous

Interrupt Level 15 13 31 Async.

Interrupt Level 14 14 30 Async.

Interrupt Level 13 15 29 Async.

Interrupt Level 12 16 28 Async.

Interrupt Level 11 17 27 Async.

Interrupt Level 10 18 26 Async.

Interrupt Level 9 19 25 Async.

Interrupt Level 8 20 24 Async.

Interrupt Level 7 21 23 Async.

Interrupt Level 6 22 22 Async.

Interrupt Level 5 23 21 Async.

Interrupt Level 4 24 20 Async.

Interrupt Level 3 25 19 Async.

Interrupt Level 2 26 18 Async.

Interrupt Level 1 27 17 Async.

3.8.5.4. Return From Trap

On returning from a trap with the RETT instruction, the following operations take place:

� The CWP is incremented by one (modulo the number of windows) to re-activate the previous window.

� The return address is calculated

� Trap conditions are checked. If traps have already been enabled (ET=1), an illegal instruction trap is taken. If traps
are still disabled but S=0, or the new CWP points to an invalid window, or the return address is not properly aligned,
then an error mode/reset trap is taken.

� If no traps are taken, then traps are re-enabled (ET=1).

� The PC is written with the contents of the nPC, and the nPC is written with the return address.

� The PS bit is copied back into the S bit.

The last two instructions of a trap handler should be a JMPL followed by a RETT. This instruction couple causes a
non-delayed control transfer back to the trapped instruction or to the instruction following the trapped instruction,
whichever is desired. See the RETT instruction definition for details.

3.9. Coprocessor Interface

In the SPARC architecture, the integer unit is the basic processing engine, but provision is made for two coprocessor
extensions. The extensions are in the form of instruction set extensions and a pair of identical signal interfaces. In the
TSC691E, one of these instruction and signal interface extensions is dedicated to floating-point operations and the
other is designated for a second coprocessor, either user defined or some future device offered by MATRA MHS and/or
Cypress. Although signals and instructions have been named to reflect the assumption of how these two extensions
will be used, either instruction set extension/signal interface may be used in any way desired.

In order for the TSC691E to support a user-defined coprocessor, the coprocessor should contain certain elements
defined by the SPARC architecture. These include an internal register set, a status register, a coprocessor queue, and
a set of compatible interface pins. These elements are identical to the floating–point interface, and it is recommended

TSC691E

Rev. H (02 Dec. 96)
104 MATRA MHS

that a user desiring to use the coprocessor interface thoroughly study the floating–point interface as an example of a
coprocessor interface application.

3.9.1. Protocol

The coprocessor extensions to the architecture are designed to allow the coprocessor to operate concurrently with the
integer unit and the floating–point unit. To keep operations synchronized, address and data busses are shared. The
initial TSC691E instruction decode determines which unit should execute the instruction. The TSC691E executes its
own instructions, but signals the coprocessor to continue the decode and execution if it recognizes a coprocessor
instruction. For coprocessor loads and stores, the TSC691E supplies the memory address and the coprocessor receives
or supplies the data. The coprocessor must deal with resource or data dependencies, signaling the problem to the
TSC691E by freezing the instruction pipeline with the CHOLD signal.

The signal interface between the TSC691E and the coprocessor consists of shared address, data, clock, reset, and
control signals, plus a special set of signals that provide synchronization and minimal status information between the
coprocessor and the TSC691E.

3.9.1.1. Coprocessor Interface Signals

The SPARC architecture defines two sets of signals intended for interfacing with two coprocessors. The TSC691E
assigns one set of coprocessor signals for specific use by the floating–point unit, and the other set of coprocessor signals
for a user–defined coprocessor. All floating–point interface signal names begin with an F, and all coprocessor interface
signal names begin with a C. Both sets of interface signals share the INST signal, which identifies a TSC691E
instruction fetch. The two groups of signals are symmetric, have identical timing requirements, and are listed in
Table 39 .

Instruction fetch is signaled by the TSC691E using the INST signal. The coprocessor uses INST as an input to enable
latching of an instruction on the data bus. The coprocessor latches all instructions fetched by the TSC691E, regardless
of instruction type. The TSC691E asserts CINS1 or CINS2 at the beginning of the decode stage of instruction execution
of a coprocessor instruction. The CINS1 or CINS2 signals are used to start the execution of a coprocessor instruction
and select which of the two most recently fetched instructions stored in the two–stage instruction buffer is to be
executed by the coprocessor.

The TSC691E requires the CP signal to be driven low in order for the integer unit to recognize the presence of a
coprocessor. Attempting to execute coprocessor instructions with CP high will cause the TSC691E to execute a cp
disabled trap.

Hardware interlocking for coprocessor instruction execution is provided with the CHOLD signal. This signal is
asserted by the coprocessor to freeze the TSC691E. This signal is asserted in cases where the TSC691E must be halted
to prevent it from causing a condition from which the coprocessor cannot recover. An example of this would be fetching
multiple coprocessor instructions that would otherwise overrun the coprocessor queue. The coprocessor would be
expected to assert CHOLD until it could handle additional instructions.

Coprocessor interrupts are asserted with the CEXC signal. This signal is asserted by the coprocessor upon the detection
of an exception case. The TSC691E will continue normal execution until the execution stage of the next coprocessor
instruction. At that time, the TSC691E will acknowledge the interrupt with CXACK, and begin coprocessor trap
execution.

Coprocessor branch on condition code (CBcc) instructions are executed by the TSC691E integer unit based on the
value of the CCC<1:0> signals supplied by the coprocessor. These signals are typically set by the execution of a
coprocessor compare instruction (defined by the designer). The CCCV signal supplied by the coprocessor indicates
whether the state of the CCC<1:0> signals is valid. CCCV is normally asserted, but is deasserted when a coprocessor
compare instruction is executed and remains deasserted until that instruction is completed. The deassertion of this
signal causes the TSC691E to halt execution. This interlock prevents the TSC691E from branching on invalid
condition codes. The SPARC architecture requires at least one non–coprocessor instruction between a coprocessor
compare and a coprocessor branch on condition code (CBcc) instruction.

TSC691E

Rev. H (02 Dec. 96)
105MATRA MHS

32–Word by 32–Bit Register
File

32–Bit Status Register

Address Decode Register 1 Instruction Decode Register 1

Address Queue Register 0

Instruction Queue Register N

Address Decode Register 2 Instruction Decode Register 2

Address Queue Register 1

Address Queue Register N

Instruction Queue Register 1

Instruction Queue Register 0

Figure 66. Coprocessor Register Model

3.9.2. Register Model

The coprocessor register model specified by the SPARC architecture is shown in Figure 66 . The coprocessor has its
own 32 x 32-bit working register file from which all operands for CPop instructions originate and to which all results
return. The contents of these registers are transferred to and from memory under control of the TSC691E, using
coprocessor load/store instructions.

The Coprocessor State Register (CSR) contains the current status of the coprocessor. The exact nature of the exception
bits and trap types are implementation dependent. The CSR is read and written indirectly through memory using the
LDCSR and STCSR instructions.

The coprocessor queue is necessary to properly handle traps with concurrently operating units. The first-in, first-out
queue records all pending coprocessor instructions and their addresses at the time of a coprocessor exception. The front
entry of the queue contains the unfinished instruction that caused the exception. The rest of the queue contains
unfinished CPops which would be restarted or emulated after the trap handler returns control to the main program.

The address and instruction decode buffers hold instructions and their addresses until the TSC691E determines if they
belong to the coprocessor. If one of the held instructions belongs to the coprocessor, the TSC691E sends the appropriate
CINS signal to move the instruction into the coprocessor execute stage. The address and a copy of the instruction also
move into the queue at this point and remain there until the instruction completes.

When a trap is taken, the TSC691E asserts the FLUSH signal, causing the coprocessor to dump any instructions in the
decode buffers. FLUSH does not affect instructions which are already in the queue.

3.9.3. Exceptions

Exactly what conditions will generate a cp exception trap are implementation dependent. However, most
implementations would probably include Unfinished CPop as a condition that would cause an exception.

An Unfinished CPop trap is generated when the coprocessor cannot complete execution because the data has exceeded
the capabilities of the coprocessor and/or has generated an inappropriate result.

TSC691E

Rev. H (02 Dec. 96)
106 MATRA MHS

4. Fault Tolerant and Test Mechanism

Fault Tolerant Mechanism:

� Parity checking on 98.7% of the total number of latches with hardware error traps

� Parity checking of address, data pads and control pads

� Program Flow Control

� Master/Checker operation

� Interleaving of the register file bits for better detection of SEU

� Manufactured using TEMIC Space hardened 0.8 µm SCMOS RT TECHNOLOGY

Test Mechanism:

� IEEE Standard Test Access Port & Boundary-Scan Architecture

� Internal Scan Path to test the internal parity error detection during off-line test

� Possibility to halt the IU by an external signal

Destination

Source 1 Source 2

Register File

136 x 32bits

Arithmetic
and Logic

Unit
Shift Unit

Program
Counters

Processor State
Window Invalid

Trap Base
Multiply Step

Instruction
Decode

Address Instruction/ Data

Align

Align

PC

control

Boundary Scan Path TAP

Program
Flow

Control

TAP control

PARITY

Control Error

G

G
G

C
h

C
h

G

Ch

G

APAR DPAR

G

CPAR

Master
Checker
Control

Ch

G

Parity Checkers

Parity Generators

ERRTYP

ERROR

MCERR

CMODE

TSC691E

Rev. H (02 Dec. 96)
107MATRA MHS

4.1. Fault Tolerant and Test Support signals

Some signals have been added for fault tolerant and test mechanism improvement. These new signals can be classified
as follows:

Address Parity Generation:

APAR—Address Bus Parity (output)

ASPAR—ASI and SIZE Parity (output)

Data Parity Generation/Checking:

DPAR—Data Bus Parity (bidirectional)

MEC control signal Parity Generation:

IMPAR—IU to MEC Control Parity (output)

FPU control signal Parity Generation/Checking:

IFPAR—IU to FPU Control Parity (output)

FIPAR—FPU to IU Control Parity (input)

Parity Checking Error Output

HWERROR—Hardware Error Occurs (outputs)

Odd parity definition: The number of one in a word, including the parity bit, is alway odd.

(e.g. 00000000 --> P=1, 00000001 --> P=0)

Master/Checker Mode

CMODE—checker Mode (input)

MCERR—Comparison Error (output)

Test Access Port

TCLK—Test Clock (input)

TRST—TEST Reset (input)

TMS—Test Mode Select (input)

TDI—Test Data Input (input)

TDO—Test Data Output

Miscellaneous

601MODE—Normal 601Mode Operation (input)

HALT—Halt (input)

FLOW—enable or disable Program Flow Control

A more detailed description of these signals is provided in Chapter 3.5

TSC691E

Rev. H (02 Dec. 96)
108 MATRA MHS

4.2. Program Flow Control

4.2.1. Introduction

A very high proportion of transient faults can cause errors in the program flow (75% in a traditional microprocessor).
This type of error is detected by the MHS TSC691E using Embedded Signature-Monitoring (ESM) techniques.

A program using ESM is partitioned in branch free basic blocks and branch instructions. For each executed instruction,
the IU calculates a checksum of 32 bits of the operation code during the execution. The checksum result consist of the
logic XOR of the instruction words with the previous checksum. The 16 MSBs are XORed with the 16 LSBs to provide
a signature word.

This 16 bits signature is compared with the correct value, precomputed by the compiler, whenever a SETHI instruction
(SETHI g0,%PRE_CHECKSUM) is executed. After the comparison, the checksum is reseted to zero.

The 6 MBSs in the immediate value of the SETHI instruction must be set to «011111».

In case of a comparison error, a hardware trap is taken with Trap Type=66H and HWERROR asserted.

There are three cases when the subsequent check is disabled:

1. When a trap is taken.

2. When executing a RETT instruction.

3. When executing a SETHI instruction to R[0] with the immediate value set to zero. This SETHI instruction
does not perform a comparison but zero the checksum. It is reserved as a NOP instruction.

For these cases the subsequent check is disabled, and will not signal an error, but will enable the checking again with
checksum equal to zero.

The Program Flow Control is enabled by the FLOW signal input. After reset the Program Flow Control is enabled (if
FLOW signal is low), and the checksum is reseted to zero.

4.2.2. Example of Program Flow Control

Pgm start

(add=0) SETHI(g0,%CH1)

TRAP RETT

SETHI(g0,%CH5)

SETHI(g0,%CH3) SETHI(g0,%CH4)

SETHI(g0,%CH6)

SETHI(g0,%0)

1 2 3

5

6 7

8

9 104

SETHI(g0,%CH2)

11
CALL,

SETHI(g0,%CH7)

12

13 14JMPL,

SETHI(g0,%CH8)

SETHI(g0,%CH7)
RESTORE

FLOW

 1- Program starts at address=0x0 with Program Flow Control enabled and Checksum=0.

 2- No comparison performed, next checking disabled and Checksum is reseted to zero. (NOP)

 3- No comparison performed, next checking enabled and Checksum is reseted to zero.

 4- Comparison performed, next checking enabled and Checksum is reseted to zeroomparison.

 5- TRAP instruction disables the next checking.

 6- No comparison performed, next checking enabled and Checksum is reseted to zero.

 7- Comparison performed, next checking enabled and Checksum is reseted to zero.

 8- RETT instruction disables the next checking.

 9- No comparison performed, next checking enabled and Checksum is reseted to zero.

10- Comparison performed, next checking enabled and Checksum is reseted to zero.

TSC691E

Rev. H (02 Dec. 96)
109MATRA MHS

11- When a CALL instruction is encountered, the delay instruction must be a SETHI instruction to perform a
comparison, enable the next checking and reset the Checksum.

12- Comparison performed, next checking enabled and Checksum is reseted to zero.

13- When the JMPL instruction is encountered the Program Flow Control is not disabled and next checking is
enable since the delay instruction is a RESTORE.

14- Comparison performed (checksum is calculated from the last SETHI encountered in the subroutine).

Conclusion: In this example, the sequences 3 to 4, 6 to 7 and 9 to 14 are checked.

Programming Note:

1- When returning from a CALL routine (13), the delay instruction is a RESTORE so, when encountering the
next SETHI(g0,%CHS) (14), the comparison is performed with a checksum calculated from the last
SETHI(g0,%CHS) of the subroutine (12).

2- All the delay instruction (instruction after a control transfer instruction: Bicc, FBfcc, CBccc, CALL, JMPL,
Ticc or RETT) are added in the checksum even this instruction is annuled.

4.3. Parity Checking

4.3.1. Introduction
In the TSC691E, 98.7% of all registers are protected by a odd parity bit (100% of the register file is protected). The
checking of registers and busses is be performed only if the registers or the busses are used by the current instruction.
With this approach, unused registers/busses will not cause an error and decreasing the uptime of the system will be
limited.

Address bus, Size and ASI busses, Data bus, Control signals of the MEC and of the FPU are also protected with parity
bits.Control signals for coprocessor are not protected by parity bit. The parity checking is disabled during reset. Care
has to be taken not to read a register before it has been written and its parity bits initialized.

When an error occurs, the HWERROR signal is asserted low and a trap is taken depending of the parity error type
(see Table 47 , page 116).

Definition of odd parity bit: The number of one in a word, including the parity bit, is alway odd.

(e.g. 00000000 --> P=1, 00000001 --> P=0)

4.3.2. Trap handling
When a hardware error is detected the HWERROR signal is asserted then a trap routine is taken depending of the error
type (see Table 47). The HWERROR signal is asserted until the error trap is taken.This software routine reviews the
failing instruction. If the cause of the error was a transient fault, it may be removed by just resuming this instruction.
In this case, HWERROR is deasserted (see 5.2.2.2, page 127).

If the error was caused by a non removable error, another hardware error trap is generated. Because a synchronous trap
is taken during a time when traps are disabled, the IU enters the error mode, asserts ERROR signal and halts
(HWERROR will stay asserted until removed by reset).

This means that the error detection mechanism will detect the error when the failing instruction is in the execute stage
in order to handle the trap normally, i.e. correct PC for the failing instruction.

The trap are grouped into the following Error-Type:

- Restartable, precise error: Errors that can be removed by retrying the instruction and with correctly saved PC
and nPC. These errors can be removed by simply returning from the trap routine.

- Non-restartable, precise error: Errors that will remain even after an instruction retry, but with correctly saved
PC and nPC. These errors are not removable and the trap routine should not attempt a retry. Since the address
of failing instruction is know, the kernel can attempt a local clean-up, i.e. not having to restart the application.

- Restartable, late error: Errors that can be removed by retrying the instruction but with PC and nPC pointing to
the following instruction (was data load error). The trap routine can emulate the failing instruction or retry
after the PC and nPC have been adjusted.

TSC691E

Rev. H (02 Dec. 96)
110 MATRA MHS

- Non-restartable, imprecise error: Error that can not be associated with a particular instruction and cannot be
removed by instruction retry. These errors are typically quite severe and will require a re-boot.

- Register file error: Error that occurred in the register file (special case of Non-restartable, precise error)

- Program flow error: Error detected by the program flow control.

Table 47. Error Type Assignments

Trap Type Error Type Error Signal

61H Restartable, precise error HWERROR

62H Non-restartable, precise error HWERROR

63H Restartable, late error HWERROR

64H Non-restartable, imprecise error HWERROR

65H Register file error HWERROR

66H Program flow error Trap only

- Master / Checker error MCERR

- Error mode ERROR

4.3.3. Priority within hardware traps for IU

When multiple hardware traps occur, the highest priority trap is taken, and lower priority traps are ignored. The priority
applied on the harware traps of the IU are define as follow:

Table 48. Hardware Priority

Trap Type Error Type Error Signal

61H Restartable, precise error 5

62H Non-restartable, precise error 2

63H Restartable, late error 4

64H Non-restartable, imprecise error 1

65H Register file error 3

66H Program flow error 6

- IU synchronous traps 7

Remark: Priority 1 is for highest priority and 5 for the lowest priority. All other synchronous traps (caused by the
actions of an instruction) has a lower priority.

4.3.4. Parity Checking on Register File and Control/Status Registers

The register file and the control/status registers of the TSC691E are protected by a parity bit. Hardware error on those
registers shall lead to hardware error trap as defined in .

TSC691E

Rev. H (02 Dec. 96)
111MATRA MHS

Table 49. Hardware error type for user registers

Register Error type Trap type

Register File Register file error 65H

FPC Restartable, precise error 61H

DPC Non-restartable, precise error 62H

EPC/WPC Non-restartable, imprecise error 64H

PSR Non-restartable, imprecise error 64H

WIM Non-restartable, precise error 62H

TBR Non-restartable, precise error 62H

Y Restartable, precise error 61H

4.3.5. Parity Checking on Control Signal for the FPU

The control signals between the IU and the FPU are protected by a parity bit.

4.3.5.1. Output control signals

The control bus contains five bits: FINS1, FINS2, FLUSH, FXACK, INST. The parity output for these five signals is
IFPAR (IU to FPU PARity). This parity bit is generated by the IU.

IFPAR is a three-state (on chip pull_up resistor=20kΩ) output controlled by TOE signal.

4.3.5.2. Input control signals

The input control signals are: FCC<1:0>, FCCV, FEXC, FHOLD,FP. The parity input for these signals is FIPAR (FPU
to IU PARity). This parity bit is generated by the FPU and checked by the IU when a FBfcc instruction is executed.
FCCV and FHOLD are re-synchronized on the rising edge of the clock to check the parity.

4.3.6. Parity Checking on Control Pads for the TSC693E (MEC)

The 13 control signals between the IU and the MEC are protected by a parity bit.

4.3.6.1. Output control signals

The output control bus contains six bits: DXFER, LDSTO, LOCK, RD, WE, WRT. The parity output for these five
signals is IMPAR (IU to MEC PARity). This parity bit is generated by the IU.

IMPAR is a high_Z (on chip pull_up resistor=20kΩ) output controlled by the COE or TOE signal.

4.3.6.2. Input control signals

No parity is performed on the input control signals: MAO, MDS, MEXC, MHOLDA, MHOLDB, BHOLD.

4.3.7. Parity Checking on Control Pads for the Coprocessor

No parity is performed on the input and output control signals.

4.3.8. Parity Generation on ADDRESS Bus

The 32 bit address bus contains a parity bit calculated by the IU and sent out on the APAR pad.

The ASI<7:0> and SIZE<1:0> busses contain also a parity bit called ASPAR which is calculated by the IU.

APAR and ASPAR are three-state (on chip pull_up resistor=20kΩ) outputs controlled by AOE or TOE signal.

4.3.9. Parity Checking on DATA Bus

The DPAR bidirectional signal contains the odd parity over the 32-bit data bus.

TSC691E

Rev. H (02 Dec. 96)
112 MATRA MHS

When the IU receives a data (LOAD) or an instruction, the parity bit is checked by the IU. In case of a STORE data
instruction, the parity bit is generated and launched in parallel by the IU.

4.3.10. Non RT 601 Mode

To be able to use a standard FPU (i.e. TSC692E), parity on the data bus has to be generated internally and parity
checking on the control bus must be turned off.

This feature is controlled by asserting the 601MODE input signal. This signal is static and shall not change when
running.

4.3.11. Error Type for external signals parity errors

Data inputs (Ints and Load) and FPU to IU control signals receive a parity bit which is checked by the IU. If an error
is detected, the IU takes a trap depending of the error type Table 50 .

Table 50. Hardware error type for external signals

Register Error type Trap type

Data (inst) Restartable, precise error 61H

Data (load) Restartable, late error 63H

FIPAR Floating–Point Disabled [1] 04H

Note 1: The parity is only checked when a FBfcc instruction is executed.

4.4. Master/checker operation

The MHS TSC691E includes comparator circuits at the outputs to support fault detection. Applications requiring a
high level of reliability can use this Master/Checker operation to introduce fault detection on a system level. By
duplication of units without the use of external comparators, 100% of the internal errors can be detected, especially
those errors which are not detected by the internal unit concurrent error detection mechanism.

4.4.1. Basic function

By asserting the signal CMODE the TSC691E can be configured either as master or checker. This signal is static and
shall not change when running. Assertion of this signal will set the IU to act as a checker to support master/checker
operation. All output signals except ERROR,HWERROR, MCERR and TAP signals will be high-Z (on chip pull_up
resistor=20kΩ). The master and at least one checker circuit are working in parallel and execute the same program.
When the master is forcing the address and data bus, the checker is in a read and compare mode. This means the output
buffers are disabled and the external busses are compared by the checker with its internal results. If a mismatch occurs
on any output, then the MCERR signals are asserted until the mismatch disappears. In this case, the system hardware
and/or software can take appropriate action.

If the master IU signals an internal error before a comparison error is indicated, it is possible to stop execution of the
two IUs by asserting the HALT signal, disable the master IU, change the checker IU to master IU and continue
execution. CMODE signal can be changed when RESET signal is asserted or when the IU is in halt mode.

On a master processor, the three-state control signals (e.g : AOE, COE, DOE, TOE) disable the checker mode of the
three-stated buffers.

An external/internal mismatch can occur for two reasons:

1- In a system with only one master processor, a short or other electrical failure can force the output signal to a
fixed voltage. For example, a bus signal can be shorted to ground. When the circuit drives a high voltage on
the bus, the external signal will be pulled low and a mismatch will occur and he IU asserts the
CMPERR signals.

2- An external/internal mismatch can occur in the master/checker mode. Figure 67 shows a basic master/checker
configuration using two TSC691E devices.

TSC691E

Rev. H (02 Dec. 96)
113MATRA MHS

Using the master/checker solution there is a possibility that the system can continue with only the correct
remaining unit, or with both after the restoration of state of the faulty unit. If an internal error is indicated in
the checker, it could be ignored. The MEC requires error signals from both the master and the checker. In case
of corruption the system behavior is defined by the MEC.

MASTER IU CHECKER IU

Address

Data

Control

TAP TAP

HALT

ERROR
HWERROR

CMODE = 1

MCERR

HALT

ERROR
HWERROR

CMODE = 0

MCERR

Figure 67. Master/Checker configuration

4.4.1.1. Master/Checker Signal description

4.4.1.1.1. MCERR—Comparison Error (output)

This signal is asserted in the checker mode when a comparison error occurs on the internal output signals (except
ERROR, HWERROR, MCERR and TAP signals) vis-à-vis the output signal of the master IU. It is deasserted when
the error disappears.

This output is high-Z (on chip pull_up resistor=20kΩ) when the TOE signal is deasserted.

4.4.1.1.2.CMODE—checker Mode (input)

Assertion of this signal will set the IU to act as a checker to support master/checker operation. All output signals except
ERROR, HWERROR, and TAP signals will be high-Z (on chip pull_up resistor=20kΩ). It is a static signal and shall
not change when running. It can change only during reset cycle or halt mode.

4.5. IEEE Standard Test Access Port & Boundary-Scan Architecture

The IU includes a Boundary Scan using a Test Access Port (TAP) interface [IEEE standard 1149.1]. This interface
is used for debugging and test purposes.

This interface provides standardized approaches to :

� testing the interconnections between integrated circuits once they have been assembled on a printed circuit board
or other substrate.

� support of testing the integrated circuit itself.

� observing or modifying activity during the component’s normal operation.

4.5.1. TAP

The Test Access Port includes the following connections : TCLK, TMS, TRST, TDI and TDO. Dedicated TAP
connections are required to allow access to the full range of mandatory features of this standard.

TSC691E

Rev. H (02 Dec. 96)
114 MATRA MHS

4.5.1.1. TCLK (input)

The Test Clock Input provides the clock for the test logic defined by this standard. TCK is active high. The IEEE
standards requires that TCLK can be stopped at 0 indefinitely without causing any change to the state of the test logic.
When TCLK is active, CKL must be held to one.

4.5.1.2. TMS (input)

The signal received by TMS is decoded by the TAP controller to control test operation.

TMS is sampled on the rising edge of TCLK and has to change on the falling edge of TCLK.

4.5.1.3. TDI (input)

Serial test instructions and data are received by the test logic by TDI.

TDI is sampled on the rising edge of TCLK and has to change on the falling edge of TCLK.

4.5.1.4. TRST (input)

The TRST input provides for asynchronous initialization of the TAP controller.

4.5.1.5. TDO (output)

TDO is the serial output for test instructions and data from the test logic defined in the standard.

4.5.2. TAP Controller

The TAP controller is a synchronous finite state machine that responds to changes at the TMS and TCLK signal of the
TAP and controls the sequence of operations of the circuit defined by the IEEE standard.

4.5.3. The Instruction Register

The Instruction Register allows an instruction to be shifted into the design. The instruction is used to select the test
to be performed or the test data register to be accessed or both. A number of mandatory and optional instructions are
defined by the standard. The instructions SAMPLE/PRELOAD, INTEST, EXTEST and BYPASS are implemented on
this chip.

The private instruction TESTPAR will be implemented to access the internal scan path registers. These registers are
not publicly accessible and will be used to test the internal parity logic.

4.5.3.1. Design and Construction of the instruction register

The instruction register is a shift-based design having an optional parallel input. These parallel inputs permit capture
of design-specific information in the Capture-IR state. Figure 68 illustrates an example implementation of an
Instruction Register Cell.

G1

1

1
1D

C1

1D

C1

R

Shift IR

Data

From last cell

Clock IR

Update IR

Reset

Instruction
bit

To next cell

Figure 68. Instruction Register Cell

TSC691E

Rev. H (02 Dec. 96)
115MATRA MHS

4.5.3.2. BYPASS Instruction

The BYPASS register contains a single shift register stage, used to speed-up shifting at the board level, through
components which are not activated.

4.5.3.3. EXTEST Instruction

The EXTEST instruction shall connect the BOUNDARY SCAN register between TDI and TDO. It is used to test
connections between components on the board level. All output signals can be disabled by using the EXTEST
instruction (except TAP).

4.5.3.4. INTEST Instruction

Intest instruction allows testing of the on-chip system logic while the component is assembled on the board, with each
test pattern and response being shifted through the boundary-scan register.

4.5.3.5. SAMPLE/PRELOAD Instruction

The SAMPLE instruction allows normal operation if the system logic with the ability to sample signals entering and
leaving the component without affecting circuit operation.

PRELOAD allows a value to be preloaded on the latched outputs of the boundary scan register. This instruction does
not modify the system behavior.

4.5.4. The Device Identification Register

The Device Identification Register is implemented on the chip. It contains the TSC691E’s assigned component
identifier: 0x0B6400B1. It is selected by the IDCODE instruction.

4.5.5. Internal Scan Path

An Internal Scan Path will be implemented to provide the off-line test of the internal parity error detection. This Internal
Scan Path will be controlled by the TAP and will force some nodes in the generation circuit of the parity bits. This would
then result in a value with the wrong parity. When this value is read again an error will be detected if the error detection
works correctly. This chain would have one bit for each parity generator.

4.5.6. Boundary scan test register

The Boundary-scan technique involves the inclusion of a shift register stage (contained in a Boundary-scan cell)
adjacent to each component pin so that signals at component boundaries can be controlled and observed using scan
testing principles.

Figure 68 illustrates an example implementation for a Boundary-scan cell that could be used for an input or output
connection to an integrated circuit. Dependent on the control signals applied to the multiplexers, data can either be
loaded into the scan register from the Signal-in port (e.g., the input pin), or driven from the register through the
Signal-out port of the cell (e.g., into the core of the component design). The second flip-flop (controlled by clock B)
is provided to ensure that the signals driven out of the cell in the latter case are held while new data is shifted into the
cell using clock A.

TSC691E

Rev. H (02 Dec. 96)
116 MATRA MHS

G1

1

1 1D

C1

1D

C1

G1

1

1

Scan out

Mode

Signal in

Shift/Load

Scan in Clock A
Clock B

Signal

out

Figure 69. Boundary Scan Cell

4.6.Interleaving register file bits

It is known that the impact from an SEU will flip adjacent bits in a register file. These multiple bit errors might be
impossible to detect with one parity bit error. Though these cases with multiple bit errors due to SEU are probably more
rare than one bit errors, they cannot be neglected, especially in the register file, which corresponds to 70% of the entire
amount of registers in the IU.

One solution to this problem is to interleave the bits of one word with the bits of another word. This is done in the register
file and will remove all multiple bit errors due to SEU and full error detection is possible with a single parity bit checker.

5. Electrical and Mechanical Specification

5.1. Maximum rating and DC Characteristics

5.1.1. Maximum Ratings

Storage Temperature -65 ° C to +150 ° C.
Ambient Temperature with Power Applied -55 ° C to +125 ° C.
Supply Voltage[1] -0.5 V to +7.0 V.
Input Voltage -0.5 V to +7.0 V.

5.1.2. Operating Range

Range Ambient Temperature [2] Vcc

Military -55° C to 125° C 5V +/- 10%

TSC691E

Rev. H (02 Dec. 96)
117MATRA MHS

5.1.3. DC Characteristics Over the Operating Range

Parameters Description Test Conditions Min. Max. Units

VOH Output HIGH Voltage VCC = Min., IOH = -2.0 mA 2.4 V

VOL Output LOW Voltage Vcc = Min., IOL = 4.0 mA 0.5 V

VIH Input HIGH Voltage 2.1 VCC V

VIL Input LOW Voltage -0.5 0.8 V

IIZ Input Leakage Current VCC = Max., VSS < VIN < VCC -10 10 µA

IOZH

IOZL
Output Leakage Current

VCC = Max., Vout = VCC

VCC = Max., Vout = VSS

-10

50[3]

10

240[3]

µA

ISC Output Short Circuit Current VCC = Max., Vout = 0V -30 -350 mA

ICCop Supply Current VCC = Max., f = 14 MHz - 200 mA

ICCsb Stand By Current Vcc = Max, f=0Mhz - 1 mA

Notes :
1. All power and ground pins must be connected before power is applied.
2. Ambient temperature is defined as the ‘instant on’ case temperature.
3. on chip pull_up resistor=20kΩ

5.1.4. Capacitance Ratings [4, 5]

TSC691E

Parameters Description Max. (pF)

CIN Input Capacitance 10

COUT Output Capacitance 12

CIO Input/Output Bus Capacitance 15

5.1.5. AC Test Loads and Waveforms

TEST LOAD

10%

90% 90%

10%

< 3 ns < 3 ns

WAVEFORM

5V

OUTPUT

R1

R2 319 ΩC=50pF
(6)

0 V

3 V

470 �

Notes :
4. Tested initially and after any design or process changes that may affect these parameters.

5. Test conditions are: VCC=5.0V, TA=25° C, f=1MHz
6. C = 30 pF (for FINS <1:∅ > signal)

TSC691E

Rev. H (02 Dec. 96)
118 MATRA MHS

5.2. TSC691E AC Characteristics

5.2.1. AC Characteristics Over the Operation Range [1]

Parameter Description
Reference

Edge
TSC691E–14
Min Max Unit

1 tCY Clock cycle 71 ns

2 tCHL Clock high and low 33 ns

3 tCRF Clock rise and fall 1 V/ns

4 tAD Address/Control [2] output delay CLK+ 55 ns

5 tAH Address/Control [2] output valid CLK+ 7 ns

6 tDOD D<31:0> output delay CLK- 35 ns

7 tDOH D<31:0> output valid CLK- 4 ns

8 tDIS D<31:0> input setup CLK+ 7 ns

9 tDIH D<31:0> input hold CLK+ 9 ns

10 tMES MEXC input setup CLK+ 12 ns

11 tMEH MEXC input hold CLK+ 4 ns

12 tHS MHOLDA, B input setup CLK- 4 ns

13 tHH MHOLDA, B input hold CLK- 9 ns

12 tHS YHOLD [3] input setup CLK- 10 ns

13 tHH YHOLD [3] input hold CLK- 7 ns

14 tHOD XHOLD [3] to Address/Control output delay XHOLD- 40 ns

15 tHOH XHOLD [3] to Address/Control output valid XHOLD+ 0 ns

16 tOE AOE, COE, DOE to output enable delay XOE- 27 ns

17 tOD AOE, COE, DOE to output disable delay XOE+ 27 ns

18 tTOE TOE asserted to output enable delay TOE- 38 ns

19 tTOD TOE deasserted to output disable delay TOE+ 38 ns

20 tSSD INST, FXACK, CXACK, INTACK,ERROR output delay CLK+ 36 ns

21 tSSH INST, FXACK, CXACK, INTACK, ERROR output valid CLK+ 3 ns

22 tRS RESET input setup CLK+ 27 ns

23 tRH RESET input hold CLK+ 3 ns

24 tFD FINS<1:0> output delay CLK+ 30 ns

25 tFH FINS<1:0> output valid CLK+ 3.5 ns

24 tFD CINS<1:0> output delay CLK+ 40 ns

25 tFH CINS<1:0> output valid CLK+ 3.5 ns

26 tFIS FCC<1:0>, CCC<1:0> input setup CLK+ 18 ns

27 tFIH FCC<1:0>, CCC<1:0> input hold CLK+ 4 ns

28 tDXD DXFER output delay CLK+ 51 ns

29 tDXH DXFER output valid CLK+ 2 ns

TSC691E

Rev. H (02 Dec. 96)
119MATRA MHS

Unit
TSC691E–14
Min Max

Reference
EdgeDescriptionParameter

30 tHDXD XHOLD [3] asserted to DXFER output delay XHOLD- 36 ns

31 tHDXH XHOLD [3] deasserted to DXFER output valid XHOLD+ 0 ns

32 tNUD INULL output delay CLK+ 36 ns

33 tNUH INULL output valid CLK+ 3 ns

34 tMDS MDS input setup CLK- 4 ns

35 tMDH MDS input hold CLK- 5 ns

36 tFLS FLUSH output delay CLK+ 30 ns

37 tFLH FLUSH output valid CLK+ 3 ns

38 tCCVS FCCV, CCCV input setup CLK- 13 ns

39 tCCVH FCCV, CCCV input hold CLK- 5 ns

40 tXES FEXC, CEXC input setup CLK+ 18 ns

41 tXEH FEXC, CEXC input hold CLK+ 4 ns

42 tMAD MAO Asserted to Address/Control Output Delay MAO+ 36 ns

43 tMAH MAO Deasserted to Address/Control Output Valid MAO- 2 ns

44 tERD HWERROR output delay CLK+ 45 ns

45 tERH HWERROR output valid CLK+ 5 ns

46 tTMS TMS input setup TCLK+ 20 ns

47 tTMH TMS input hold TCLK+ 25 ns

48 tTDIS TDI input setup TCLK+ 20 ns

49 tTDIH TDI input hold TCLK+ 25 ns

50 tTRS TRST input setup TCLK+ 20 ns

51 tTRH TRST input hold TCLK+ 25 ns

52 tTDOD TDO output delay TCLK- 45 ns

53 tTDOH TDO output valid TCLK- 5 ns

54 tTCY TCLK clock cycle 100 1000 ns

55 tXAPD XAPAR[4] output delay CLK+ 55 ns

56 tXAPH XAPAR[4] output valid CLK+ 7 ns

57 tDPOD DPAR output delay CLK- 45 ns

58 tDPOH DPAR output valid CLK- 4 ns

59 tDPIS DPAR input setup CLK+ 6 ns

60 tDPIH DPAR input hold CLK+ 4 ns

61 tIFPD IFPAR output delay CLK+ 53 ns

62 tIFPH IFPAR output valid CLK+ 3 ns

63 tFIPS FIPAR input setup CLK+ 18 ns

64 tFIPH FIPAR input hold CLK+ 4 ns

TSC691E

Rev. H (02 Dec. 96)
120 MATRA MHS

Unit
TSC691E–14
Min Max

Reference
EdgeDescriptionParameter

65 tIMPD IMPAR output delay CLK+ 60 ns

66 tIMPH IMPAR output valid CLK+ 7 ns

67 tMCED MCERR output delay [5] CLK+ 45 ns

68 tMCEV MCERR output valid [5] CLK+ 5 ns

69 tSTATS 601MODE/FLOW/CMODE/FP input setup [6] CLK+ 18 ns

70 tHAS HALT input setup CLK- 13 ns

71 tHAH HALT input hold CLK- 4 ns

72 tIRLS IRL<3:0> input setup CLK+ 2 ns

73 tIRLH IRL<3:0> input hold CLK+ 6 ns

NOTES:
1. Test conditions assume signal transition times of 3 ns or less, a timing reference level of 1.5V, input levels of 0 to 3.0V and output loading of
50pF
2. Address/Control signals include: A<31:0>, ASI<7:0>, SIZE<1:0>, RD, WRT, WE, LOCK, and LDSTO.
3. YHOLD includes BHOLD, FHOLD, and CHOLD.
4. XAPAR includes APAR and ASPAR.
5. When an error occurs on D[31:0] or Dpar, MCERR may be delayed for 1 cycles depending of frequency.
6. 601MODE/FLOW/CMODE/FP shall be change to be related to positive clock edge during reset active or HALT active.
7. XHOLD includes BHOLD, MHOLDA, MHOLDB, FHOLD and CHOLD.

5.2.2. Waveforms

5.2.2.1. Clock and ERROR/ RESET Timing

22

23

 DV/Dt =0.8 V/ ns
2

1

9 CLK Cycles
 Minimum

3

20 21

69

Reset needs to be synchronized with
CLK only if the processor must be in
step with other devices in the system.

CLK

ERROR

RESET

FP
601MODE

FLOW
CMODE

TSC691E

Rev. H (02 Dec. 96)
121MATRA MHS

5.2.2.2. Clock and HWERROR Timing for Parity Error Type

CLK

44

Parity error

44

45

A[31:0] A1 A2 Trap 1. Trap 2A0

D[31:0] D1 D2 --- D3D0

on this data
INULL/FLUSH

INST

Note: The IU check the parity on internal register when the instruction is in the execute stag.

HWERROR

5.2.2.3. TOE De–assertion /Assertion

CLK

Hi - Z

Hi - Z

19 18

All bussed
outputs

All active
HIGH outputs

All active
LOW outputs

Hi - Z

TOE

TSC691E

Rev. H (02 Dec. 96)
122 MATRA MHS

5.2.2.4. Load Timing

CLK

A<31:0>

DXFER

A1 A2

D<31:0>

LD
DATA
ADR.

A3

I1 I2 D1

ASI<7:0> ASIA1 ASIA2 ASIAD ASIA3

SIZE<1:0> SIZEA1 SIZEA2 SIZEAD SIZEA3

LD INST
ADR

ASIA0

SIZEA0

LD

1

8
9

4 5

2928

20 21

INST

RD

TSC691E

Rev. H (02 Dec. 96)
123MATRA MHS

5.2.2.5. Store Timing

CLK

DXFER

A1 A2

D<31:0>

DATA
ADR.

INST 1 INST 2 DATA

ASIA1 ASIA2 ASIAD

SIZE<1:0> SIZEA1 SIZEA2 SIZEADSIZEA0

ST

8
9

A3

ASIA3

SIZEA3

I3

ASIAD

SIZEAD

INULL

6 7

A<31:0>

ASI<7:0>

WRT

INST

1

4 5

28 29

21 20

32 33

ST
INST

ADR

DATA
ADR.

ASIA0

DATA PARITY

57 58

DPAR

WE

TSC691E

Rev. H (02 Dec. 96)
124 MATRA MHS

5.2.2.6. Load with Cache Miss

CLK

DXFER

A1

D<31:0>

ASIA1

SIZE<1:0> SIZEA1 SIZEA1SIZEA0

1

4 5

LD DATA
ADR.

SIZEAD

Missed
Data

LD Data

MHOLD

MDS

ASIA0

DOE

8

9

35

12

34

1617

SIZEA1

ASIA1

A1

14

A1

ASIA1

LD DATA
ADR.

ASIAD

13 15

SIZEA2

A2

ASIA2

30 31

A<31:0>

ASI<7:0>

LD Data ParityDPAR

16 60

MAO

42 43

TSC691E

Rev. H (02 Dec. 96)
125MATRA MHS

5.2.2.7. Memory Exception Timing

CLK

A2

ASIA2

SIZE<1:0> SIZEA2SIZEA1

1

4

ASIA2

SIZEA2

A3

ASIA3

SIZEA3

MHOLD

MDS

INULL

ASIA1

13

A1

MEXC

11

A2 A TB

ASITB

SIZEA4

32 33

A<31:0>

ASI<7:0>

34

35

10

12

5

5.2.2.8. Bus Arbitration Timing

CLK

AOE,
COE,
DOE

A1 A1 A2A1

Hi - Z

Hi - Z

12

17 16

14

13

15

TOE can replace the combined function of AOE, COE, and DOE

A<31:0>
ASI<31:0>
SIZE<1:0>

RD

LOCK
LDSTO

BHOLD

WE

TSC691E

Rev. H (02 Dec. 96)
126 MATRA MHS

5.2.2.9. Floating-Point Timing

CLK

A<31:0>

FLUSH

A2

D<31:0>

A5

Inst 1

A1 A3 A4

Inst 3Inst 2

FINS1/2

FPop FCMP

FEXC

FXACK

A6

Inst 5

A7

Inst 6

A8

Inst 7

36

25

37

41

21

38
39

27

INST

FCC<1:0>

24

26

20

40

5.2.2.10. TAP Signals

TCLK

TMS

TDI

TDO

46

47

48

49

52 53

54

50

51

TRST

CLK=1

TSC691E

Rev. H (02 Dec. 96)
127MATRA MHS

5.2.2.11. PARITY Signals

A0 A1 A2

FP inst FP inst

8

9

1

CLK

A[31:0]

D[31:0]

A3 A4 A4

2

APAR APAR A1 APAR A2 APAR A3 APAR A4 APAR A4

DPAR inst DPAR instDPAR

FIPAR

IFPAR

55

56

60
59

63

64

65

66

61

62

4

5

IMPAR

5.2.2.12. MASTER/CHECKER Signals

1

CLK

2

MCERR

67 68

error error

TSC691E

Rev. H (02 Dec. 96)
128 MATRA MHS

5.2.2.13. IRL[3:0] Signals

CLK

IRL[3:0]

72

73

5.2.2.14. HALT Signal timing

1

CLK

2

70

71

INTERNAL
CLK

70

71

FP

69

OUTPUT

SIGNALS
D1D0 D2 D3

ADD A2A1 A3 A4A3

D2

HALT

601MODE
FLOW

CMODE

TSC691E

Rev. H (02 Dec. 96)
129MATRA MHS

5.3. Package Description

5.3.1. 256-Pin MQFP_F Package

TSC691E

Rev. H (02 Dec. 96)
130 MATRA MHS

5.3.2. 256-Pin MQFP_F Pin Assignments

Pin Signal Pin Signal Pin Signal Pin Signal

1 IMPAR 65 VSSO 129 VCCI 193 VSSO

2 VCCO 66 VSSO 130 VCCO 194 VSSO

3 COE 67 VSSI 131 D11 195 IFT

4 VCCI 68 VCCO 132 VCCO 196 VSSI

5 DXFER 69 A16 133 D12 197 FLUSH

6 LOCK 70 A15 134 D10 198 IFPAR

7 VSSO 71 A18 135 VSSO 199 VCCO

8 WRT 72 A17 136 D13 200 ERROR

9 SIZE1 73 A19 137 D15 201 CXACK

10 MAO 74 VSSO 138 D14 202 INTACK

11 ASPAR 75 A20 139 D16 203 FXACK

12 SIZE0 76 VCCI 140 VSSI 204 VSSO

13 VCCO 77 VSSI 141 D17 205 CCC1

14 HWERROR 78 A21 142 VCCO 206 CCC0

15 ASI1 79 VCCO 143 D18 207 FPSYN

16 ASI0 80 A22 144 D19 208 FCC1

17 VSSI 81 A24 145 -NC- 209 VSSI

18 ASI2 82 A23 146 -NC- 210 FCC0

19 ASI3 83 A25 147 -NC- 211 IRL3

20 VSSO 84 A26 148 -NC- 212 IRL2

21 ASI4 85 VSSO 149 D20 213 -NC-

22 VCCI 86 A27 150 D21 214 -NC-

23 ASI5 87 A28 151 VSSO 215 IRL1

24 ASI6 88 A29 152 -NC- 216 -NC-

25 ASI7 89 VSSI 153 -NC- 217 IRL0

26 VCCO 90 VSST 154 VCCI 218 -NC-

27 VSST 91 A30 155 D22 219 -NC-

28 CLK 92 VCCO 156 -NC- 220 CCCV

29 -NC- 93 A31 157 D23 221 FIPAR

30 VSSI 94 VCCI 158 VSST 222 VCCI

31 -NC- 95 601MODE 159 -NC- 223 FCCV

32 -NC- 96 -NC- 160 VSSI 224 CMODE

TSC691E

Rev. H (02 Dec. 96)
131MATRA MHS

SignalPinSignalPinSignalPinSignalPin

33 AOE 97 FLOW 161 -NC- 225 VSST

34 APAR 98 MCERR 162 D24 226 RESET

35 A0 99 HALT 163 -NC- 227 VSSI

36 A1 100 DPAR 164 D25 228 CHOLD

37 VCCI 101 -NC- 165 VCCO 229 FHOLD

38 A2 102 -NC- 166 VCCI 230 BHOLD

39 -NC- 103 D0 167 D26 231 -NC-

40 -NC- 104 VSSO 168 D27 232 MHOLDB

41 VSSO 105 D1 169 D28 233 MHOLDA

42 A3 106 D2 170 VSSO 234 MDS

43 -NC- 107 -NC- 171 D29 235 -NC-

44 -NC- 108 VSSI 172 D30 236 FP

45 A4 109 D3 173 VSSI 237 CEXC

46 A5 110 VCCO 174 VCCI 238 MEXC

47 -NC- 111 D4 175 D31 239 -NC-

48 -NC- 112 D5 176 DOE 240 -NC-

49 A6 113 -NC- 177 VCCI 241 FEXC

50 VCCO 114 D6 178 FINS2 242 -NC-

51 A7 115 VCCI 179 FINS1 243 VSSI

52 A8 116 D8 180 CINS1 244 VSSO

53 A9 117 D7 181 VCCO 245 INST

54 A10 118 -NC- 182 TOE 246 RD

55 VSSI 119 -NC- 183 VSSI 247 VCCI

56 VSSO 120 D9 184 TRST 248 LDSTO

57 -NC- 121 VCCO 185 CINS2 249 VCCO

58 A12 122 -NC- 186 TDI 250 WE

59 A11 123 -NC- 187 TCLK 251 CP

60 A14 124 VSSI 188 VSSI 252 VCCT

61 A13 125 VCCT 189 TMS 253 INULL

62 VCCI 126 VSSO 190 VCCI 254 VSSO

63 VCCI 127 VSSO 191 TDO 255 VSSI

64 VCCO 128 -NC- 192 VCCO 256 VSSO

	1. Introduction
	2. TSC691E OVERVIEW
	2.1. SPARC RISC STANDARD FUNCTIONS :
	2.2. Fault Tolerant and Test Mechanism Improvements:
	2.3. Presentation of the ERC32 computing core

	3. Standard IU Function
	3.1. Introduction
	3.2. Description Of Parts
	3.3. Programming Model
	3.4. Instruction Set
	3.5. Signal Description
	3.6. Pipeline and Instruction Execution Timing
	3.7. Bus Operation and Timing
	3.8. Exception Model
	3.9. Coprocessor Interface

	4. Fault Tolerant and Test Mechanism
	4.3. Parity Checking
	4.1. Fault Tolerant and Test Support signals
	4.2. Program Flow Control
	4.4. Master/checker operation
	4.5. IEEE Standard Test Access Port & Boundary-Scan Architecture
	4.6.Interleaving register file bits

	5. Electrical and Mechanical Specification
	5.2. TSC691E AC Characteristics
	5.1. Maximum rating and DC Characteristics
	5.3. Package Description

