
Notes on theRepresentation of State Machinesin Higher Order LogicMike GordonComputer LaboratoryUniversity of CambridgeJanuary 6, 1999
1 IntroductionState machines (or automata) are an important component of hardware de-sign. This note discusses their representation in higher order logic from theperspective of formal veri�cation. Quite a lot of work already exists on rep-resenting machines in higher order logic, such as Loewenstein's theories ofautomata in HOL and the formulation of parts of Hopcroft and Ullman inNuprl. The discussion here is intended to provide a framework for represent-ing synchronous hardware designs in the HOL logic in a way that supportsthe application of both automatic tools (equivalence checkers, model checkersetc) and user guided proof.2 Abstract state machinesState machines are a mathematical abstraction of synchronous digital sys-tems. Such systems have a behaviour determined by their state, whose valueis drawn from a state space. A state machine is assumed to remain in agiven state emitting some outputs until a state change event occurs (usuallya clock edge). When this happens a new state is entered which depends onthe current state and current inputs.

1



2.1 Moore and Mealy machinesMachines are traditionally classi�ed into Moore machines and Mealy ma-chines. With Moore machines, the value being output depends only on thevalue of the current state. With Mealy machines, the output depends onboth the current state and on the value being input.Let state be the type of states (so the state space consists of all values oftype state). Let input be the type of input values and output be the type ofoutput values.A Moore machine is represented by a triple hs; �; �i, where s : state is thean initial state, � : (state � input) ! state is the next-state function and� : state! output is the output function.A Mealy machine is the same, except that it has a di�erent type of outputfunction � : (state� input)! output (i.e. outputs can depend on the inputas well as the state).Note that if the state space of a Mealy machine has just one element, thenthe only non-trivial component of the machine is the output function, whichin this case is essentially just a function from inputs to outputs. Thus Mealymachines include as a special case a representation of combinational logic.For pragmatic reasons (minimising state space size, avoiding asynchronousloops), hardware designers sometimes use Mealy machines and sometimesuse Moore machine with separate combinational logic.The kind of state machines just de�ned are deterministic in that a uniquenext state is determined by the current state and input. Non-deterministicmachines are represented by having a set of initial states, replacing the nextstate function by a next state relation1 � : ((state � input) � state) ! booland the output function by a relation2 � : ((state� input)� output)! bool.2.2 Transition systemsState machines can be represented as transition systems. This representationis used for model checking.A transition system is a pair hI; Ri, where I is a set of initial states andR is a relation between pairs of states. The interpretation of R(s; s0) { i.e. sis related to s0 by R { is that s0 is a possible successor to s.1In higher order logic, a relation between types � and � can be represented as thecharacteristic function of the graph of the relation, i.e. as a function of type (���)! bool,where bool is the type of Booleans consisting of the two truth-values T (true) and F (false).2Machines with truly non-deterministic outputs don't seems to arise often, but therepresentation of outputs with a relation rather than a function is useful when encodingmachines in logic. 2



With the transition system representation, the inputs and outputs areregarded as part of a more general kind of state. A non-deterministic Mealymachine M = hIM; �M; �Mi is represented by a transition system hIM; RMiwhere RM((s; i; o); (s0; i0; o0)) = �M(s; i; s0) ^ �M(s; i; o)This is slightly subtle and needs some explanation, but �rst note that thestate space of the transition system is stateM � inputM � outputM, whichhas more components (namely inputs and outputs) than the state of theMealy machine from which it was derived. There is potential for confusionbetween these two di�erent notions of state space. In the de�nition of RMnote that the input and outputs in the successor state (i.e. i0 and o0) arenot constrained. This reects the idea that the input is determined by theenvironment and that the output is a `combinational' function of the currentstate and { in the case of a Mealy machine { the inputs. The physicalintuition of RM((s; i; o); (s0; i0; o0)) is that during stable or `quiescent' periodsof M's behaviour in which its state is s and input i then the output will beo. When a state change event occurs then the current state will become s0and the output will change to reect the new state and input.2.3 TracesA transition system hI; Ri determines a set of traces. A trace is an in�nitesequence of states such that the �rst member of the sequence is in I and eachmember of the sequence is related to its successor by R.If the state space is product, say State1� � � � � Staten, then a trace is anin�nite sequence of n-tuples:hhs01; : : : ; s0ni; hs11; : : : ; s1ni; : : : iIt is sometimes convenient to consider instead the transpose of this,namely the n-tuple of in�nite sequences:hhs01; s11; s21; : : :i;hs02; s12; s22; : : :i;...hs0n; s1n; s2n; : : :iiEach in�nite sequence in such an n-tuple is the trace of one componentof the state.
3



3 Hardware description languagesTo specify a machine for a particular task it is necessary to express the initialstate and transition. For simple examples, this can be done using standardmathematical notation (e.g. set theory or higher order logic), but for complexhardware designs this is impractical for several reasons:� Standard mathematical notation is not formal, so cannot be easilyparsed and processed by CAD tools.� Standard mathematics does not provide notation for hardware orientedoperations such as manipulating bitstrings (words, bytes etc).� Industrial scale machines are very large and need to be structuredand parameterised in complex ways (modules, instances etc) requir-ing programming-like constructs.� The abstract state machine realised by a hardware design is only oneaspect of the design: its function. Other aspects include timing andelectrical details.For these (and other) reasons, machines are usually expressed using ahardware description language (HDL). Industry standard languages, like Ver-ilog and VHDL, are designed primarily to support detailed hardware simu-lation. The function { i.e. abstract state machine { represented by an HDLtext is hard to extract from the mass of other detail. Furthermore, theremay be several di�erent abstraction levels (RTL, behavioral etc) at whichthe abstract function can be viewed.To enable pure functional behaviour to be expressed, a number of lan-guages have been developed that provide a more mathematical way of ex-pressing machines. These include model checker input languages (e.g. SMV)and synchronous languages (e.g. Esterel, Lustre). Such languages stand mid-way between commercial HDLs and abstract state machines: they enablecomplex designs to be speci�ed in a structured way, yet have a direct math-ematical interpretation.4 Embedding semantics in logicThere are two main approaches to representing the semantics of HDLs inhigher order logic: deep embedding and shallow embedding . With deep em-bedding a type, syn say, is de�ned inside the logic to represent HDL texts(values of type syn will essentially just be parse trees of texts). A type, sem4



say, that represents the semantics is also de�ned, and then a semantic func-tion, Meaning : syn ! sem say, is de�ned, usually by primitive recursion oversyn. With a shallow embedding there is no type syn or semantic functionMeaning inside the logic. Instead a parser (e.g. written in ML) is used totranslate HDL texts directly into terms of the logic.Shallow embedding places less demands on the logic, but doesn't allowcertain kinds of properties to be formulated. For example, with a deep em-bedding formulae of the form8x : syn: Meaning(x) = Meaning(Transform(x))can be formulated. With a shallow embedding this cannot be expressed.On the other hand, with a deep embedding the semantics must be ex-pressible with a function inside the logic, and this semantic function musthave a type. If di�erent members of syn need a semantics represented byvalues of di�erent types, it may not be possible to �nd a type for a semanticfunction (especially in simple type theory { in set theory or dependent typetheory this is less of a potential problem). There is no corresponding prob-lem with a shallow embedding, because the process of assigning meanings totexts does not have to encoded as a function inside the logic. A metalan-guage program can easily compute di�erently typed terms for di�erent HDLtexts.Shallow embedding tends to be more e�cient because neither the type ofprogram texts not the semantic functions need to be represented in logic. Forexample, de�ning a datatype in ML to represent Verilog parse trees is easy,but making a type de�nition inside HOL to represent such trees stresses theHOL system almost to its limits.Thus deep embedding allows richer properties to be expressed, but shal-low embedding allows a richer choice of semantics and is less computationallydemanding.5 Representing machines in logicIn order to de�ne the semantics of an HDL in logic it is necessary to devisea way to represent machine behaviours as logical formulae.For model checking is is necessary to extract the transition system (i.e. themodel), which is then encoded in a compact form (e.g. as a BDD). The usuallogical representation of a transition system is to use primed state variablesto denote the successor state.For example: consider the (arbitrary) example below.
5



sel

i o1

o2

Mux

Add

w1 w2

w3
Reg

Reg

The state vector is hi; sel; w1; w2; w3; o1; o2i. If instances of the registerReg are modeled as unit delays (i.e. the output is the input in the precedingstate) and Add and Mux are a combinational adder and multiplexer, respec-tively, then the transition relation can be represented as the formula:(w1 = sel?i:o1) ^ (w20 = w1) ^ (w3 = w1+w2) ^ (o1 = w2) ^ (o20 = w3)A formula like this can be directly encoded as a BDD and used for modelchecking, however it is `at' and does not show any module hierarchy. Suchstructure is normally expressed in an HDL using a variety of linguistic devicesfor modularisation, module instantiation and interconnection, and localisa-tion (hiding) of state and wires.Consider the following hierarchical version of the diagram:
sel

i o1

o2

Mux

Add

M1

w1 w2

w3
Reg

Reg

M2

M

A simpli�ed pseudo-Verilog speci�cation of this is:
6



MODULE M(sel,i,o1,o2)INPUT sel,i;OUTPUT o1,o2;WIRE w1,w2;Mux(sel,i,o1,w1);Reg(w1,w2);M1(w1,w2,o1,o2)ENDMODULE M1(i1,i2,o1,o2)INPUT i1,i2;OUTPUT o1,o2;WIRE w;ASSIGN o1=i1;Add(i1,i2,w);Reg(w,o2);ENDMODULE Mux(sel,i1,i2,o)INPUT sel,i1,i2;OUTPUT o;ASSIGN o = sel ? i1 : 12;ENDMODULE Reg (i,o)INPUT i;OUTPUT o;ALWAYS @(posedge clock) o<=i;ENDMODULE Add(i1,i2,o)INPUT i1,i2;OUTPUT o;ASSIGN o = i1+i2;ENDA cycle-based semantics of this hierarchical structure (but not the local-isation of wires) can be represented inside logic using the de�nitions below(which is an abstraction based on state transitions occurring on the positiveedge of clock).

7



DEFINE M((sel; i; w1; w2; w3; o1; o2); (sel0; i0; w10; w20; w30; o10; o20)) =M1((sel; i; o2; w2); (sel0; i0; o20; w20)) ^M2((w1; w2; w3; o1; o2); (w10; w20; w30; o10; o20))DEFINE M1((sel; i1; i2; ; o1; o2); (sel0; i10; i20; ; o10; o20)) =Mux((sel; i1; i2; o1); (sel0; i10; i20; o10)) ^Reg((o1; o2); (o10; o20))DEFINE M2((i1; i2; w; o1; o2); (i10; i20; w0; o10; o20)) =Add((i1; i2; w); (i10; i20; w0)) ^Reg((w; o1); (w0; o10)) ^ (o2 = i2)DEFINE Mux((sel; i1; i2; o); (sel0; i10; i20; o0)) =(o = sel?i1:i2)DEFINE Add((i1; i2; o); (i10; i20; o0)) =(o = i1 + i2)DEFINE Reg((i; o); (i0; o0)) =(o0 = i)This modularisation is over-the-top for such a simple example, but modu-lar speci�cations scale much better than at ones. For example, the BDDs forthe whole machine can be built incrementally following the module structure.The obvious redundancy of having both primed and unprimed variablescould could be eliminated by using some syntactic conventions, such ashx1; : : : ; xmi for ((x1; : : : ; xm); (x01; : : : ; x0m)). Although this might work, ex-perience (e.g. with Z) suggests that such hidden priming conventions cansweep under the carpet tricky proof issues, because the logical form of thespeci�cation becomes obscured (e.g. Reghw; o1i has four free variables, nottwo).The localisation of variables is usually mimicked in logic by existentialquanti�cation. At �rst sight this might appear to work with the conventionthat the next state is represented by primed variables. Consider M2. Thewire from Add to Reg (w in the de�nition of M2 which is instantiated to w3in the diagram) can be hidden by existential quanti�cation:DEFINE M2((i1; i2; o1; o2); (i10; i20; o10; o20)) =9w w0: Add((i1; i2; w); (i10; i20; w0)) ^Reg((w; o1); (w0; o10)) ^ (o2 = i2)From this it follows that: 8



M2((i1; i2; o1; o2); (i10; i20; o10; o20))= 9w w0: (w = i1 + i2) ^ (o10 = w) ^ (o2 = i2)= 9w: (w = i1 + i2) ^ (o10 = w) ^ (o2 = i2)= (9w: (w = i1 + i2) ^ (o10 = w)) ^ (o2 = i2)= (9w: (o0 = i1 + i2) ^ (o10 = w)) ^ (o2 = i2)= (o0 = i1 + i2) ^ (9w: (o10 = w)) ^ (o2 = i2)= (o0 = i1 + i2) ^ T ^ (o2 = i2)= (o10 = i1 + i2) ^ (o2 = i2)which is what is wanted. However, consider now two registers in series:
i RegReg o

w

RegReg

This represented in logic by:DEFINE RegReg((i; o); (i0; o0)) =9w w0: Reg((i; w); (i0; w0)) ^ Reg((w; o); (w0; o0))From this it follows that:RegReg((i; o); (i0; o0))= 9w w0: (w0 = i) ^ (o0 = w)= (9w0: w0 = i) ^ (9w: o0 = w)= T ^ T= TThis is clearly wrong! The problem is that the values of i and o don'tdetermine the value stored in the �rst register (the one with input i andoutput w) at the current cycle, though the stored value becomes i on thenext cycle. Since any value could be being stored, the value of o0 couldbe any value too. Thus (i; o) does not constrain (i0; o0) { which is exactlywhat the calculation above veri�es. The value output by the second register(the one with output o) is actually the value input to the �rst register twocycles earlier. This suggests the need for something like o00 = i, where o00 isanother variable. This is a slippery slope { consideration of three registers inseries would require o000 etc. Instead of having a cumbersome (and potentially9



in�nite) sequence of variables o, o0, o00 etc. ranging over the values during allcycles, it is neater to have a single variable ranging over traces. Traces arenaturally represented as functions from the type num of natural numbers tovalues. Operators like + and the conditional�?�:� can be `lifted' pointwiseto operate on sequences, for example f1 + f2 = �t:f1(t) + f2(t) etc. Insteadof the priming notation, an operator next is de�ned by next(f) = �t:f(t+1).This also eliminates the duplication of variables due to priming. With thisapproach, two registers in series are modelled by:DEFINE Reg(i; o) = (next(o) = i)DEFINE RegReg(i; o) = 9w: Reg(i; w) ^ Reg(w; o)Now a correct result is obtained:RegReg(i; o)= 9w: (next(w) = i) ^ (next(o) = w)= 9w: (next(next(o)) = i) ^ (next(o) = w)= (next(next(o)) = i) ^ (9w: next(o) = w)= (next(next(o)) = i) ^ T= (next(next(o)) = i)Similarly with three registers in series, the relation next(next(next(o))) = iwould follow, and so on.With variables ranging over traces, the hierarchy M can now be de�ned,with both modularisation and localisation, as follows:DEFINEM(sel; i; o1; o2) = 9w1 w2: M1(sel; i; o2; w2) ^ M2(w1; w2; o1; o2)DEFINEM1(sel; i1; i2; ; o1; o2) = Mux(sel; i1; i2; o1) ^ Reg(o1; o2)DEFINEM2(i1; i2; o1; o2) = 9w: Add(i1; i2; w) ^ Reg(w; o1) ^ (o2 = i2)DEFINEMux(sel; i1; i2; o) = (o = sel?i1:i2)DEFINEAdd(i1; i2; o) = (o = i1 + i2)DEFINEReg(i; o) = (next(o) = i)10



The pseudo-Verilog description given above can be compared with thispurely logical representation. It is clear that a shallow embedding can easilytake the former into the latter.The transition system can be derived by purely logical manipulation:M(sel; i; o1; o2) =(next(o1) = (sel?i:o2) + o2) ^ (next(o2) = sel?i:o2)which is the transition system:hsel; i; o1; o2i �! hsel; i; (sel?i:o2) + o2; sel?i:o2i

11


