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Introduction

Goal : to design a microprocessor that can be used and
modified by anyone without industrial pressure

<RMS_beard=on> It’s all about freedom : This is
‘Freedom CPU’, not ‘Free CPU’

‘Year 4’ means 4th presentation to CCC and 4th year of
existence
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Architecture

F-CPU is designed ‘from scratch’ and is not compatible
with existing computers

The architecture is aimed at high efficiency for
computation intensive software

RISC features and methods
Fixed-size 32 bits instructions
64 x 64 bits registers
Load-store architecture
No stack
Register #0 is hardwired to 0
Conditional move and jump/call/return
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Data types

Beware ! a register is not equivalent to a number !

Registers are ‘at least’ 64-bit wide

Registers can have more than 64 bits !

It is simpler and more efficient to enlarge the registers
than to decode more instructions per cycle (decoding
and control logic would explode

Register sizes can be any power of 2 : 128, 256, 512,
or even 32768 bits (in theory)
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Data types (2)

scalar data : aligned to the LSB, all MSB are cleared
8, 16, 32 and 64 bit integers are supported

pointers : like scalar data but the number of valid LSB is
not known (depends on the implementation, could be
30 or 50)

SIMD data : 2**N scalar data
8x8, 4x16 and 2x32 bit integers are supported for 64
bit implementations
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Instruction Format
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FC0

1st implementation: FC0
Statically scheduled (scoreboard-based)
Single-issue core
Out Of Order Completion
Many “Execution units” around a “Crossbar”
“Carpaccio” pipeline stages for higher frequency
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Ongoing work

(this is not complete or exhaustive)

VHDL model

C model

Manual

Boot monitor

Gcc port

Assembler

Linker

L4

Linux
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Simple SIMD character comparison
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The ROP2 (logic) unit

F-CPU Design Team
ROP2 unit : schematic view for one byte
(C) Yann Guidon 8/31/2001
version : dec. 2, 2001
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This is only an indication
of the equation complexity.
The circuit will be synthesised
from the parametised LUT.

The fanout is higher
than that : 16 for the
64-bit version. fanout_tree
is used to compensate for
this.

partial_MUX

partial_ROP

partial_OR

partial_AND
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C example

char a;

...

if (a == TAB || a == CR
|| a == ’ ’ || a == 0) {

...

}
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Assembler example

a in Ra, temporary result in Rtemp, mask in Rmask :

loadaddri end if, Rjmp ; prefetch
sdup.8 Ra, Rtemp ; duplicate a
loadcons[0] 0x2000, Rmask ; load constants
loadconsx[1] 0x090A, Rmask
xorn.and.32 Rmask, Rtemp, Rtemp
bnz Rtemp, Rjmp

...

end if:
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Arbitrary byte shuffling in one byte
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Random shuffling example

0 -> 3
1 -> 2
2 -> 4
3 -> 7
4 -> 5
5 -> 1
6 -> 0
7 -> 6

From this, we generate the following masks :

r3 = mask1 = 0x8040201008040201; // linear bit selection
r5 = maks2 = 0x4001028020100408; // permuted mask
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The assembly langage source

sdup.b r1, r2 ; duplicate r1 into r2
and.or r2, r3, r4 ; first mask and combine
and r4, r5, r6 ; second mask
shri 32, r6, r7 ; gather the bits in log2
or r6, r7
shri 16, r6, r7
or r6, r7
shri 8, r6, r7
or r6, r7

9 instructions for shuffling 8 bits :
this yields almost 1 instruction per bit
!
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Powerup and BIST method
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The FC0 pipeline

ROP2 SHL INCASU

Register
Set

F-CPU 19C3 presentation – p.19/64



Popcount unit and LFSR

ROP2 SHL INCASU

Register
Set

Signal Generator

compact
signature

generate
signature
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Popcount unit and LFSR
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The hardware design flow
Nicolas Boulay
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A transistor
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A real transistor
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A wafer
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Some ASIC
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An other ASIC
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FPGA principe

F-CPU 19C3 presentation – p.28/64



Making hardware

FPGA (field programable gate array)

Semi-custom, full custom (ASIC, Application Specific
Integrated Circuit).
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Design IP (or a core)

Nowdays what had been put in mainboard are put in the
same die (piece of silicon). Componants are replace by
core to create System-on-Chip (SoC).

F-cpu is a core. So a SoC could be maid of fritz chip + fcpu.
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TCPA
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GPL

Depending of the licence, we could obliged to open all

sources. But the cores risk to be not used (imagine that

linux unallowed to run proprietary stuff). And seeing the

code could not surely help to break the protection.
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LGPL

Only the core is protected like the Leon is (Sparc V7 clone).
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GPL+proprietary interface

Like linux kernel, we could choose to open certain interface

(like the io bus but not the SDRAM bus).
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Licence

But the licence is a constant flameware on the mailing list.

GPL is currently used, but is too much restrictive from my

point of view. It’s also hard to accept that GPL could cover

hardware, too (something with sources and a "result").
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Design
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Design cycle

Write HDL then
Simulate RTL
code (waveform)

Synthesis it to
have a netlist
(timing result +
number of gate
used)

Place and route
to get plan
(GDS2 files +
more precise
timing result +
area used (wire))
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Simulator

F-CPU sources are compatible with most compilers and
have been tested with :

ncsim (cadence, fastest of the market)

modelsim

Simili (freeware, slower that ncsim)

ghdl (alpha version) (the story of a guy that wanted to
learn Ada and VHDL so he wrote a VHDL gcc front end
in Ada)

ALDEC’s Riviera (nice but proprietary)

Vanilla VHDL (abandonware)
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Synthetiser

Design Compiler (Synopsys, 100 Keur/year... for ASIC)

Synplify (Synplicity for FPGA)

_NO_ free software
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Place & Route

Cadence tools

Tendance of merged with synthesys tools (for <130 nm
technology).

Also _NO_ free software
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That’s NOT all folks !

Static timing analysis tool to verify synthesis (primetime
from synopsys : 100 Keur/year).

Equivalence checking between netlist and rtl code (avoid
slooow simulation in gate level).

ATPG (automatic patern generator) to create input vectors
to test the chip at the fab to cover the maximum stuck fault
with the minimum of vectors.

BIST generator to test memory.

Formal proofing tools to help finding bug in the rtl design.
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Tools conclusion

So it miss a lot of free tools !
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Call convention
Cedric Bail
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F-CPU call capacity

No specialised register

No stack pointer
No specific address pointer
63 Generals registers

No call

No stack
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What we need to do a call

Stack pointer

Return address

Return value

Parameters
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C source example

void hanoi(int N, char* D, char* B, char* I)
{

if (N == 1)
printf ("move %s to %s", D, B);

else
{

hanoi (N-1, D, I, B);
printf ("move %s to %s", D, B);
hanoi (N-1, I, B, D);

}
}
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The first call convention

R0

= always zero
R1-R61 = preserved accross call
R62 = return address
R63 = stack pointer
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The cost

Before using a register need to store it in memory

Before doing a return you need to load them back from
memory
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Prologue example

storei -8, [sp], r1
storei -8, [sp], r2
storei -8, [sp], r3
storei -8, [sp], r4
storei -8, [sp], r5
storei -8, [sp], r6
storei -8, [sp], r7
storei -8, [sp], r62

addi 6 * 8, sp, r1
loadi +8, [r1], r2 ; char* I
loadi +8, [r1], r3 ; char* B
loadi +8, [r1], r4 ; char* D
loadi +8, [r1], r5 ; int N
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Epilogue example

loadi -8, [sp], r62
loadi -8, [sp], r7
loadi -8, [sp], r6
loadi -8, [sp], r5
loadi -8, [sp], r4
loadi -8, [sp], r3
loadi -8, [sp], r2
loadi -8, [sp], r1
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hanoi with first call convention

22 * 64 bits data are stored

20 * 64 bits data are loaded

No tail recursive call
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Second call convention

R1-R15 = Parameters
R16-R31 = Temporary (not preserved accross call)
R32-R61 = Saved temporary (preserved accross call)
R62 = Stack pointer
R63 = Return address
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Prologue example

storei -8, [sp], r32
storei -8, [sp], r33
storei -8, [sp], r34
storei -8, [sp], r35
storei -8, [sp], r62
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Epilogue example

loadi +8, [sp], r62
loadi +8, [sp], r35
loadi +8, [sp], r34
loadi +8, [sp], r33
loadi +8, [sp], r32
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hanoi with second call convention

10 * 64 bits data are stored

10 * 64 bits data are loaded

Tail recursive call

Recursive prologue
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Recursive prologue example

storei -8, [sp], r36
storei -8, [sp], r37

loadcons printf, r36
loopentry r37

; Hanoi really start here
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The maskload/store idea

R1-R15 = Parameters
R16-R31 = Temporary (not preserved accross call)
R32-R57 = Saved temporary (preserved accross call)
R58 = Mask register
R59 = Pointer to Procedure Linkage Table
R60 = Pointer to Global Offset Table
R61 = Frame pointer
R62 = Stack pointer
R63 = Return address
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Prologue example

Will save r48-r52, mr (r58), sp (r62), ra (r63)
1100 0100 0001 1111

move r0, t2
loadcons.3 0xC82F, t2
and mr, t2, t3

maskstore t3, [sp]
move t2, r48
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Epilogue example

maskload r48, [sp]
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Problem

Asynchronous

Complex

Faults

Never the same binary with the same code
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Solution

But we can do it with conditionnal load and store.

cstorel t3, [sp], r48
shiftli 1, t3, t3
msubi 8, sp, sp
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The current accepted call convention

R1-R15 = Parameters
R16-R31 = Temporary (not preserved accross call)
R32-R58 = Saved temporary (preserved accross call)
R59 = Pointer to Procedure Linkage Table
R60 = Pointer to Global Offset Table
R61 = Frame pointer
R62 = Stack pointer
R63 = Return address
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Linking solution

Use elf to put information on register used by function and
call graph

Clean address mode

No hidden register

Always the same result with the same code

Always the best result for the binarie
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Questions ?

Cedric BAIL : cedric.bail@free.fr
Nicolas BOULAY : nico@seul.org
Yann GUIDON : whygee@f-cpu.org
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