
F-CPU: Year 4
Bail Cedric

Boulay Nicolas

Yann Guidon

F-CPU 19C3 presentation – p.1/64

Plan

F-CPU 4 dummies

A simple SIMD character comparison

Another example : arbitrary byte shuffling in one byte

The hardware design flow

TCPA

Design

Call convention

F-CPU 19C3 presentation – p.2/64

F-CPU 4 dummies
Yann Guidon

F-CPU 19C3 presentation – p.3/64

Introduction

Goal : to design a microprocessor that can be used and
modified by anyone without industrial pressure

<RMS_beard=on> It’s all about freedom : This is
‘Freedom CPU’, not ‘Free CPU’

‘Year 4’ means 4th presentation to CCC and 4th year of
existence

F-CPU 19C3 presentation – p.4/64

Architecture

F-CPU is designed ‘from scratch’ and is not compatible
with existing computers

The architecture is aimed at high efficiency for
computation intensive software

RISC features and methods
Fixed-size 32 bits instructions
64 x 64 bits registers
Load-store architecture
No stack
Register #0 is hardwired to 0
Conditional move and jump/call/return

F-CPU 19C3 presentation – p.5/64

Data types

Beware ! a register is not equivalent to a number !

Registers are ‘at least’ 64-bit wide

Registers can have more than 64 bits !

It is simpler and more efficient to enlarge the registers
than to decode more instructions per cycle (decoding
and control logic would explode

Register sizes can be any power of 2 : 128, 256, 512,
or even 32768 bits (in theory)

F-CPU 19C3 presentation – p.6/64

Data types (2)

scalar data : aligned to the LSB, all MSB are cleared
8, 16, 32 and 64 bit integers are supported

pointers : like scalar data but the number of valid LSB is
not known (depends on the implementation, could be
30 or 50)

SIMD data : 2**N scalar data
8x8, 4x16 and 2x32 bit integers are supported for 64
bit implementations

F-CPU 19C3 presentation – p.7/64

Instruction Format

F-CPU 19C3 presentation – p.8/64

FC0

1st implementation: FC0
Statically scheduled (scoreboard-based)
Single-issue core
Out Of Order Completion
Many “Execution units” around a “Crossbar”
“Carpaccio” pipeline stages for higher frequency

F-CPU 19C3 presentation – p.9/64

Ongoing work

(this is not complete or exhaustive)

VHDL model

C model

Manual

Boot monitor

Gcc port

Assembler

Linker

L4

Linux

F-CPU 19C3 presentation – p.10/64

Simple SIMD character comparison

F-CPU 19C3 presentation – p.11/64

The ROP2 (logic) unit

F-CPU Design Team
ROP2 unit : schematic view for one byte
(C) Yann Guidon 8/31/2001
version : dec. 2, 2001

ro
p2

_u
ni

t.v
hd

l
ro

p2
_x

ba
r.

vh
dl

FF FFFF

A B
FF

C

FF FF FF

ROP2_function
2 1 0

2 1 0

LUT

FF FFFF

A B
FF

C
FF FFFF

A B
FF

C
FF FFFF

A B
FF

C

FF

S
FF

S
FF

S
FF

S

ROP2_function_bit3

FF FFFF

A B
FF

C
FF FFFF

A B
FF

C
FF FFFF

A B
FF

C
FF FFFF

A B
FF

C

FF

S
FF

S
FF

S
FF

S

FFFF

ROP2_mode

3
-
l
e
v
e
l

s
i
g
n
a
l

a
m
p
l
i
f
i
c
a
t
i
o
n

t
r
e
e

(
1
-
>
4
-
>
1
6
-
>
6
4
)

p
e
r
f
o
r
m
e
d

b
y

f
a
n
o
u
t
_
t
r
e
e

This is only an indication
of the equation complexity.
The circuit will be synthesised
from the parametised LUT.

The fanout is higher
than that : 16 for the
64-bit version. fanout_tree
is used to compensate for
this.

partial_MUX

partial_ROP

partial_OR

partial_AND

F-CPU 19C3 presentation – p.12/64

C example

char a;

...

if (a == TAB || a == CR
|| a == ’ ’ || a == 0) {

...

}

F-CPU 19C3 presentation – p.13/64

Assembler example

a in Ra, temporary result in Rtemp, mask in Rmask :

loadaddri end if, Rjmp ; prefetch
sdup.8 Ra, Rtemp ; duplicate a
loadcons[0] 0x2000, Rmask ; load constants
loadconsx[1] 0x090A, Rmask
xorn.and.32 Rmask, Rtemp, Rtemp
bnz Rtemp, Rjmp

...

end if:

F-CPU 19C3 presentation – p.14/64

Arbitrary byte shuffling in one byte

F-CPU 19C3 presentation – p.15/64

Random shuffling example

0 -> 3
1 -> 2
2 -> 4
3 -> 7
4 -> 5
5 -> 1
6 -> 0
7 -> 6

From this, we generate the following masks :

r3 = mask1 = 0x8040201008040201; // linear bit selection
r5 = maks2 = 0x4001028020100408; // permuted mask

F-CPU 19C3 presentation – p.16/64

The assembly langage source

sdup.b r1, r2 ; duplicate r1 into r2
and.or r2, r3, r4 ; first mask and combine
and r4, r5, r6 ; second mask
shri 32, r6, r7 ; gather the bits in log2
or r6, r7
shri 16, r6, r7
or r6, r7
shri 8, r6, r7
or r6, r7

9 instructions for shuffling 8 bits :
this yields almost 1 instruction per bit
!

F-CPU 19C3 presentation – p.17/64

Powerup and BIST method

F-CPU 19C3 presentation – p.18/64

The FC0 pipeline

ROP2 SHL INCASU

Register
Set

F-CPU 19C3 presentation – p.19/64

Popcount unit and LFSR

ROP2 SHL INCASU

Register
Set

Signal Generator

compact
signature

generate
signature

F-CPU 19C3 presentation – p.20/64

Popcount unit and LFSR

X
O

R

P
O

P
C

O
U

N
T

M
U

X

L
F

S
R

64

666
6

64

64 64

F-CPU 19C3 presentation – p.21/64

The hardware design flow
Nicolas Boulay

F-CPU 19C3 presentation – p.22/64

A transistor

F-CPU 19C3 presentation – p.23/64

A real transistor

F-CPU 19C3 presentation – p.24/64

A wafer

F-CPU 19C3 presentation – p.25/64

Some ASIC

F-CPU 19C3 presentation – p.26/64

An other ASIC

F-CPU 19C3 presentation – p.27/64

FPGA principe

F-CPU 19C3 presentation – p.28/64

Making hardware

FPGA (field programable gate array)

Semi-custom, full custom (ASIC, Application Specific
Integrated Circuit).

F-CPU 19C3 presentation – p.29/64

Design IP (or a core)

Nowdays what had been put in mainboard are put in the
same die (piece of silicon). Componants are replace by
core to create System-on-Chip (SoC).

F-cpu is a core. So a SoC could be maid of fritz chip + fcpu.

F-CPU 19C3 presentation – p.30/64

TCPA

F-CPU 19C3 presentation – p.31/64

GPL

Depending of the licence, we could obliged to open all

sources. But the cores risk to be not used (imagine that

linux unallowed to run proprietary stuff). And seeing the

code could not surely help to break the protection.

F-CPU 19C3 presentation – p.32/64

LGPL

Only the core is protected like the Leon is (Sparc V7 clone).

F-CPU 19C3 presentation – p.33/64

GPL+proprietary interface

Like linux kernel, we could choose to open certain interface

(like the io bus but not the SDRAM bus).

F-CPU 19C3 presentation – p.34/64

Licence

But the licence is a constant flameware on the mailing list.

GPL is currently used, but is too much restrictive from my

point of view. It’s also hard to accept that GPL could cover

hardware, too (something with sources and a "result").

F-CPU 19C3 presentation – p.35/64

Design

F-CPU 19C3 presentation – p.36/64

Design cycle

Write HDL then
Simulate RTL
code (waveform)

Synthesis it to
have a netlist
(timing result +
number of gate
used)

Place and route
to get plan
(GDS2 files +
more precise
timing result +
area used (wire))

F-CPU 19C3 presentation – p.37/64

Design cycle

Write HDL then
Simulate RTL
code (waveform)

Synthesis it to
have a netlist
(timing result +
number of gate
used)

Place and route
to get plan
(GDS2 files +
more precise
timing result +
area used (wire))

F-CPU 19C3 presentation – p.37/64

Design cycle

Write HDL then
Simulate RTL
code (waveform)

Synthesis it to
have a netlist
(timing result +
number of gate
used)

Place and route
to get plan
(GDS2 files +
more precise
timing result +
area used (wire))

F-CPU 19C3 presentation – p.37/64

Simulator

F-CPU sources are compatible with most compilers and
have been tested with :

ncsim (cadence, fastest of the market)

modelsim

Simili (freeware, slower that ncsim)

ghdl (alpha version) (the story of a guy that wanted to
learn Ada and VHDL so he wrote a VHDL gcc front end
in Ada)

ALDEC’s Riviera (nice but proprietary)

Vanilla VHDL (abandonware)

F-CPU 19C3 presentation – p.38/64

Synthetiser

Design Compiler (Synopsys, 100 Keur/year... for ASIC)

Synplify (Synplicity for FPGA)

NO free software

F-CPU 19C3 presentation – p.39/64

Place & Route

Cadence tools

Tendance of merged with synthesys tools (for <130 nm
technology).

Also _NO_ free software

F-CPU 19C3 presentation – p.40/64

That’s NOT all folks !

Static timing analysis tool to verify synthesis (primetime
from synopsys : 100 Keur/year).

Equivalence checking between netlist and rtl code (avoid
slooow simulation in gate level).

ATPG (automatic patern generator) to create input vectors
to test the chip at the fab to cover the maximum stuck fault
with the minimum of vectors.

BIST generator to test memory.

Formal proofing tools to help finding bug in the rtl design.

F-CPU 19C3 presentation – p.41/64

Tools conclusion

So it miss a lot of free tools !

F-CPU 19C3 presentation – p.42/64

Call convention
Cedric Bail

F-CPU 19C3 presentation – p.43/64

F-CPU call capacity

No specialised register

No stack pointer
No specific address pointer
63 Generals registers

No call

No stack

F-CPU 19C3 presentation – p.44/64

F-CPU call capacity

No specialised register
No stack pointer

No specific address pointer
63 Generals registers

No call

No stack

F-CPU 19C3 presentation – p.44/64

F-CPU call capacity

No specialised register
No stack pointer
No specific address pointer

63 Generals registers

No call

No stack

F-CPU 19C3 presentation – p.44/64

F-CPU call capacity

No specialised register
No stack pointer
No specific address pointer
63 Generals registers

No call

No stack

F-CPU 19C3 presentation – p.44/64

F-CPU call capacity

No specialised register
No stack pointer
No specific address pointer
63 Generals registers

No call

No stack

F-CPU 19C3 presentation – p.44/64

F-CPU call capacity

No specialised register
No stack pointer
No specific address pointer
63 Generals registers

No call

No stack

F-CPU 19C3 presentation – p.44/64

What we need to do a call

Stack pointer

Return address

Return value

Parameters

F-CPU 19C3 presentation – p.45/64

C source example

void hanoi(int N, char* D, char* B, char* I)
{

if (N == 1)
printf ("move %s to %s", D, B);

else
{

hanoi (N-1, D, I, B);
printf ("move %s to %s", D, B);
hanoi (N-1, I, B, D);

}
}

F-CPU 19C3 presentation – p.46/64

The first call convention

R0

= always zero
R1-R61 = preserved accross call
R62 = return address
R63 = stack pointer

F-CPU 19C3 presentation – p.47/64

The first call convention

R0 = always zero

R1-R61 = preserved accross call
R62 = return address
R63 = stack pointer

F-CPU 19C3 presentation – p.47/64

The first call convention

R0 = always zero
R1-R61

= preserved accross call

R62

= return address

R63

= stack pointer

F-CPU 19C3 presentation – p.47/64

The first call convention

R0 = always zero
R1-R61 = preserved accross call
R62 = return address
R63 = stack pointer

F-CPU 19C3 presentation – p.47/64

The cost

Before using a register need to store it in memory

Before doing a return you need to load them back from
memory

F-CPU 19C3 presentation – p.48/64

Prologue example

storei -8, [sp], r1
storei -8, [sp], r2
storei -8, [sp], r3
storei -8, [sp], r4
storei -8, [sp], r5
storei -8, [sp], r6
storei -8, [sp], r7
storei -8, [sp], r62

addi 6 * 8, sp, r1
loadi +8, [r1], r2 ; char* I
loadi +8, [r1], r3 ; char* B
loadi +8, [r1], r4 ; char* D
loadi +8, [r1], r5 ; int N

F-CPU 19C3 presentation – p.49/64

Prologue example

storei -8, [sp], r1
storei -8, [sp], r2
storei -8, [sp], r3
storei -8, [sp], r4
storei -8, [sp], r5
storei -8, [sp], r6
storei -8, [sp], r7
storei -8, [sp], r62

addi 6 * 8, sp, r1
loadi +8, [r1], r2 ; char* I
loadi +8, [r1], r3 ; char* B
loadi +8, [r1], r4 ; char* D
loadi +8, [r1], r5 ; int N

F-CPU 19C3 presentation – p.49/64

Epilogue example

loadi -8, [sp], r62
loadi -8, [sp], r7
loadi -8, [sp], r6
loadi -8, [sp], r5
loadi -8, [sp], r4
loadi -8, [sp], r3
loadi -8, [sp], r2
loadi -8, [sp], r1

F-CPU 19C3 presentation – p.50/64

hanoi with first call convention

22 * 64 bits data are stored

20 * 64 bits data are loaded

No tail recursive call

F-CPU 19C3 presentation – p.51/64

Second call convention

R1-R15 = Parameters
R16-R31 = Temporary (not preserved accross call)
R32-R61 = Saved temporary (preserved accross call)
R62 = Stack pointer
R63 = Return address

F-CPU 19C3 presentation – p.52/64

Prologue example

storei -8, [sp], r32
storei -8, [sp], r33
storei -8, [sp], r34
storei -8, [sp], r35
storei -8, [sp], r62

F-CPU 19C3 presentation – p.53/64

Epilogue example

loadi +8, [sp], r62
loadi +8, [sp], r35
loadi +8, [sp], r34
loadi +8, [sp], r33
loadi +8, [sp], r32

F-CPU 19C3 presentation – p.54/64

hanoi with second call convention

10 * 64 bits data are stored

10 * 64 bits data are loaded

Tail recursive call

Recursive prologue

F-CPU 19C3 presentation – p.55/64

Recursive prologue example

storei -8, [sp], r36
storei -8, [sp], r37

loadcons printf, r36
loopentry r37

; Hanoi really start here

F-CPU 19C3 presentation – p.56/64

The maskload/store idea

R1-R15 = Parameters
R16-R31 = Temporary (not preserved accross call)
R32-R57 = Saved temporary (preserved accross call)
R58 = Mask register
R59 = Pointer to Procedure Linkage Table
R60 = Pointer to Global Offset Table
R61 = Frame pointer
R62 = Stack pointer
R63 = Return address

F-CPU 19C3 presentation – p.57/64

Prologue example

Will save r48-r52, mr (r58), sp (r62), ra (r63)
1100 0100 0001 1111

move r0, t2
loadcons.3 0xC82F, t2
and mr, t2, t3

maskstore t3, [sp]
move t2, r48

F-CPU 19C3 presentation – p.58/64

Epilogue example

maskload r48, [sp]

F-CPU 19C3 presentation – p.59/64

Problem

Asynchronous

Complex

Faults

Never the same binary with the same code

F-CPU 19C3 presentation – p.60/64

Solution

But we can do it with conditionnal load and store.

cstorel t3, [sp], r48
shiftli 1, t3, t3
msubi 8, sp, sp

F-CPU 19C3 presentation – p.61/64

The current accepted call convention

R1-R15 = Parameters
R16-R31 = Temporary (not preserved accross call)
R32-R58 = Saved temporary (preserved accross call)
R59 = Pointer to Procedure Linkage Table
R60 = Pointer to Global Offset Table
R61 = Frame pointer
R62 = Stack pointer
R63 = Return address

F-CPU 19C3 presentation – p.62/64

Linking solution

Use elf to put information on register used by function and
call graph

Clean address mode

No hidden register

Always the same result with the same code

Always the best result for the binarie

F-CPU 19C3 presentation – p.63/64

Questions ?

Cedric BAIL : cedric.bail@free.fr
Nicolas BOULAY : nico@seul.org
Yann GUIDON : whygee@f-cpu.org

F-CPU 19C3 presentation – p.64/64

	Plan
	F-CPU 4 dummies\ Yann Guidon
	Introduction
	Architecture
	Data types
	Data types (2)
	Instruction Format
	FC0
	Ongoing work
	Simple SIMD character comparison
	The ROP2 (logic)
unit
	C example
	Assembler example
	Arbitrary byte shuffling in one byte
	 Random shuffling example
	The assembly langage source
	Powerup and BIST method
	The FC0 pipeline
	Popcount unit and LFSR
	Popcount unit and LFSR
	The hardware design flow \ Nicolas Boulay
	A transistor
	A real transistor
	A wafer
	Some ASIC
	An other ASIC
	FPGA principe
	Making hardware
	Design IP (or a core)
	TCPA
	GPL
	LGPL
	GPL+proprietary interface
	Licence
	Design
	Design cycle
	Simulator
	Synthetiser
	Place & Route
	That's NOT all folks !
	Tools conclusion
	Call convention\ Cedric Bail
	F-CPU call capacity
	What we need to do a call
	C source example
	The first call convention
	The cost
	Prologue example
	Epilogue example
	hanoi with first call convention
	Second call convention
	Prologue example
	Epilogue example
	hanoi with second call convention
	Recursive prologue example
	The maskload/store idea
	Prologue example
	Epilogue example
	Problem
	Solution
	The current accepted call convention
	Linking solution
	Questions ?

