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As with many construction projects, it is often easier to build in a hierarchical fashion. Initially, we use the very
basic building blocks to build slightly larger building blocks, and then from these larger building blocks, we build
yet larger building blocks, and so on. Similarly, in constructing large digital circuits, instead of starting with the
basic logic gates as building blocks each time, we often start with larger building blocks. Man'/f@‘( these larger
building blocks are often used over and over again in different digital circuits, and therefore, are-cor idlered as
standard components for large digital circuits. In order to reduce the design time, these standard:-compopents are
often made available in standard libraries so that they do not have to be redesigned each time/that thi€y are needed.
For example, many digital circuits require the addition of two numbers; therefore, an addercircuit’is considered a
standard component and is available in most standard libraries. (?( @j\)

/
1%

Standard combinational components are combinational circuits that are availab%';@w‘&\andard libraries. These
combinational components are used mainly in the construction of datapaths. Far @in our microprocessor
road map, the standard combinational components are the multiplexer, ALU, géﬁm‘rator, nd tri-state buffer. Other
standard combinational components include adders, subtractors, deco W’S\,?ﬁéﬁ ders, shifters, rotators, and
multipliers. Although the next-state logic and output logic circuits in the comm‘f\. re combinational circuits, they
are not considered as standard combinational components because they are designedzniquely for a particular control
unit to solve a specific problem and usually are never reused in anothe‘r‘\%’/@\\

In this chapter, we will design some standard combinational comf ./These components will be used in
later chapters for the building of the datapath in the microprocessom(v\'\!/ha “\ve use these components to build the
datapath, we do not need to know the detailed construction of these/em@g@nj;nts. Instead, we only need to know how
these components operate, and how they connect to other con‘(ﬁex\;}s. Nevertheless, in order to see the whole
picture, we should understand how these individual componen(f&q‘\iﬂ' gned.

ZL N >\ y

So far in our discussion, we have always used?he\%gm “high” and “low” to mean 1 or 0, or “on” or “off”,
respectively. However, this is somewhat arbitrary, and thereis no reason why we can’t say a 0 is a high or a 1 is off.
In fact, many standard off-the-shelf components‘h\a@%at we call negative logic where 0 is for on and 1 is for off.
Using negative logic usually is more difficult tg 'Mnd because we are used to positive logic where 1 is for on
and 0 is for off. In all of our discussions, wf\*m’me more natural, positive logic that we are familiar with.

Nevertheless, in order to prevent any Tr@(}*\ usion as to whether we are using positive logic or negative logic, we
often use the words “assert,” “de-assert, \\\f(@ high,” and “active-low.” Regardless of whether we are using
positive or negative logic, active-hig‘c':é):a‘\wa, q(means that a 1 (i.e., a high) will cause the signal to be active or

4.1 Signal Naming Conventions

enabled and that a 0 will cause the signal to/be inactive or disabled. For example, if there is an active-high signal
called add and we want to enable it/ v.e\..o ake it do what it is intended for, which in this case is to add something),
then we need to set this signal lin”e\ﬁ 1. Setting this signal to a 0 will cause this signal to be disabled or inactive.
An active-low signal, on the owim means that a 0 will cause the signal to be active or enabled, and that a 1 will
cause the signal to be inactivg' @I‘ﬁ; bied. So if the signal add is an active-low signal, then we need to setitto a 0 to
make it add something.

N
We also use the‘ward \55\ rt"i% mean: to make a signal active or to enable the signal. To de-assert a signal is
to disable the signal or toimake it inactive. For example, to assert the active-high add signal line means to set the
add signal to a 1. 'll;jv;;;;ert an active-low line also means to set the line to a 1—since a 0 will enable the line

(active-low)—and we t to disable (de-assert) it.

4.2 Adder

4.2.1 Full Adder

To construct an adder for adding two n-bit binary numbers, X = X1 ... X and Y = y,.1 ... Yo, We need to first
consider the addition of a single bit slice, x; with y;, together with the carry-in bit, c;, from the previous bit position
on the right. The result from this addition is a sum bit, s;, and a carry-out bit, c;,1, for the next bit position. In other
words, s; = X; + y; + ¢;, and ¢;.1 = 1 if there is a carry from the addition to the next bit on the left. Note that the +
operator in this equation is addition and not the logical or.
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For example, consider the following addition of the two 4-bit binary numbers, X = 1001 and Y = 0011.

) €

) o\ o/
LA A
1 1 0 0

)
The result of the addition is 1100. The addition is performed just like that for decimal numbers, (%%ﬁot that there is a
carry whenever the sum is either a 2 or a 3 in decimals, since 2 is 10 in binary and 3 is 11. The nn j@ icant bit in
the 10 or the 11 is the carry-out bit. Looking at the bit slice that is highlighted in blue Wher(\\fﬂdl and ¢, =
1, the addition for this bit slice is x; +y; + ¢; =0+ 1 + 1 = 10. Therefore, the sum bit is SN\angthe carry-out bit

isc,=1. /\ Y/

The circuit for the addition of a single bit slice is known as a full adder (F ,“n \@jtiuth table is shown in
Figure 4.1(a). The derivation of the equations for s; and c;.; are shown in Flgure 43{b). From these two equations,
we get the circuit for the full adder, as shown in Figure 4.1(c). Figure 4. 1,(7d) @ logic symbol for it. The

dataflow VHDL code for the full adder is shown in Figure 4.2. /\
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Figure 4.1 Full a}@em@ th table; (b) equations for s; and ci.4; (c) circuit; (d) logic symbol.
N,

(-
LIBRARY IEEE; J
USE IEEE.STD-LOGIC_1164.ALL;

ENTITY fa IS PORT (
Ci, Xi, Yi: IN STD_LOGIC;
Cil, Si: OUT STD_LOGIC);
END fa;
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ARCHITECTURE Dataflow OF fa IS

BEGIN
Cil <= (Xi AND Yi) OR (Ci AND (Xi XOR Yi));
Si <= Xi XOR Yi XOR Ci;

END Dataflow;

Figure 4.2 Dataflow VHDL code for a 1-bit full adder.

4.2.2 Ripple-carry Adder

The full adder is for adding two operands that are only one bit wide. To add two operands that are, say, four bits
wide, we connect four full adders together in series. The resulting circuit (shown in Figure 4.3) is called a ripple-
carry adder for adding two 4-bit operands.

Since a full adder adds the three bits, x;, y; and c;, together, we need to set the first carry-in bit, ¢, to 0 in order
to perform the addition correctly. Moreover, the output signal, c.y, is a 1 whenever there is an overflow in the
addition.

The structural VHDL code for the 4-bit ripple-carry adder is shown in Figure 4.4. Since we need to duplicate
the full adder component four times, we can use either the PORT MAP statement four times or the FOR-
GENERATE statement, as shown in the code, to automatically generate the four components. The statement FOR k
IN 3 DOWNTO 0 GENERATE determines how many times to repeat the PORT MAP statement that is in the body
of the GENERATE statement and the values used for k. The vector signal Carryv is used to propagate the carry bit
from one FA to the next.

out

«—C,=0

Figure 4.3 Ripple-carry adder.

LI1BRARY IEEE;
USE 1EEE.STD_LOGIC_1164_ALL;

ENTITY Adder4 IS PORT (
A, B: IN STD_LOGIC_VECTOR(3 DOWNTO 0);
Cout: OUT STD_LOGIC;
SUM: OUT STD_LOGIC_VECTOR(3 DOWNTO 0));
END Adder4;

ARCHITECTURE Structural OF Adder4 IS
COMPONENT FA PORT (
ci, xi, yi: IN STD_LOGIC;
co, si: OUT STD_LOGIC);
END COMPONENT;

SIGNAL Carryv: STD_LOGIC_VECTOR(4 DOWNTO 0);

BEGIN
Carryv(0) <= "0";

Adder: FOR k IN 3 DOWNTO O GENERATE
FullAdder: FA PORT MAP (Carryv(k), A(k), B(k), Carryv(k+l), SUM(K)):

Digital Logic and Microprocessor Design with VHDL Copyright Enoch Hwang



Chapter 4 — Standard Combinational Components Page 6 of 38

END GENERATE Adder;

Cout <= Carryv(4);
END Structural;

Figure 4.4 VHDL code for a 4-bit ripple-carry adder using a FOR-GENERATE Statement.

4.2.3 * Carry-Lookahead Adder

The ripple-carry adder is slow because the carry-in for each full adder is dependent on the carry-out signal from
the previous FA. So before FA; can output valid data, it must wait for FA;_; to have valid data. In the carry-
lookahead adder, each bit slice eliminates this dependency on the previous carry-out signal and instead uses the
values of the two input operands, X and Y, directly to deduce the needed signals. This is possible from the following
observations regarding the carry-out signal. For each FA;, the carry-out signal, ¢y, is set to a 1 if either one of the
following two conditions is true:

xi=landy;=1
or
(x;=1ory;=1)andc;=1
In other words,
Ciet = Xi¥i + Ci(Xi + Vi) (4.1)

At first glance, this carry-out equation looks completely different from the carry-out equation deduced in Figure
4.1(b). However, they are equivalent (see Problem P2.6(h)).

If we let
gi = XiYi
and
pi=Xi tYi

then Equation (4.1) can be rewritten as
Civ1 =i * PiCi (4.2)

Using Equation (4.2) for c;.1, we can recursively expand it to get the carry-out equations for any bit slice, ¢;, that
is dependent only on the two input operands, X and Y, and the initial carry-in bit, c,. Using this technique, we get the
following carry-out equations for the first four bit slices

C1 =0Jo * PoCo (4.3)
C2 =01t+PiCs

=01 + P1(Qo + PoCo)

=01+ P10o *+ P1PeCo (4.4)

C3 =02+ P20
=02 + P2 (91 + P19o + P1PoCo)

=021 P201 + P2P1do + P2P1 PoCo (4.5)
C4 =03+ PsCs

=03 + P3(92 + P291 + P2P10o + P2P1PoCo)

= Q3 + P02 + P3P201 + PaP2P1do + P3P2P1PoCo (4.6)

Using Equations (4.3) to (4.6), we obtain the circuit for generating the carry-lookahead signals for c; to c,, as
shown in Figure 4.5(a). Note that each equation is translated to a three-level combinational logic—one level for
generating the g; and p;, and two levels (for the sum-of-products format) for generating the c; expression. This carry-
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lookahead circuit can be reduced even further because we want ¢, to be a 0 when performing additions and this 0
will cancel the rightmost product term in each equation.

The full adder for the carry-lookahead adder can also be made simpler, since it is no longer requlm% enerate
the carry-out signal for the next bit slice. In other words, the carry-in signal for the full adder \/f?om the
new carry-lookahead circuit rather than from the carry-out signal of the previous bit slice. Thus \*Qs II adder only
needs to generate the sum; signal. Figure 4.5(b) shows one bit slice of the carry-lookahead a "?Juir\mﬁ an n-bit carry-
lookahead adder, we use n bit slices. These n bit slices are not connected in series as w @rfpple carry adder;
otherwise, it defeats the purpose of having the more complicated carry-out circuit. /\

/7
R /w
X3 Y3 X Y2 Xy Y1 % Yo <’\
vNﬂq XO"|'Xi-1 yo--|-yi_1
93 Py 9 Py 91 Pq 9o Po Carry-
\\ﬁ\ lookahead
= Circuit
{ \
c, f\\J Ci
l X @ Q
N
e L\\\ sum
y 1
NN
Cy C, 0'1\\\ ’
?
\&J (b)
Figure 4.5 (a) Circuit for generating the cv?rx Mead signals, c; to cg4; (b) one bit slice of the carry-lookahead

adder.

: *@
4.3 Two’s Complement Blﬁ%y\l bers

Before introducing subtractlgﬁ ircuits, we need to review how negative numbers are encoded using two’s
complement representation. Bnm oding of numbers can be interpreted as either signed or unsigned. Unsigned
numbers include only posﬂww@ ers\ nd zero, whereas signed numbers include positive, negative, and zero. For
signed numbers, the most s "nQ‘v nt it (MSB) tells whether the number is positive or negative. If the most
significant bit is a 1, the fher nbes is negative; otherwise, the number is positive. The value of a positive signed
number is obtained gxact @ igned numbers described in Section 2.1. For example, the value for the positive
signed number 01 1 just1x2°+1x2°+1x2%+1x2%=105in decimal format.

However, to dem/w)jthe value of a negative signed number, we need to perform a two-step process: (1) flip
all the 1 bits to 0’s and all the 0 bits to 1’s, and (2) add a 1 to the result obtained from Step 1. The number obtained

from applying this two-step process is evaluated as an unsigned number for its value. The negative of this resulting
value is the value of the original negative signed number.

Example 4.1: Finding the value for a signed number

Given the 8-bit signed number 11101001,, we know that it is a negative number because of the leading 1. To
find out the value of this negative number, we perform the two-step process as follows.

11101001 (original number)
00010110 (flip bits)
00010111 (add a 1 to the previous number)

The value for the resulting number 00010111 is 1 x 2* + 1 x 2% + 1 x 2% + 1 x 2° = 23. Therefore, the value of the
original number 11101001 is negative 23 (-23). .

Digital Logic and Microprocessor Design with VHDL Copyright Enoch Hwang



Chapter 4 — Standard Combinational Components Page 8 of 38

Example 4.2: Finding the value for a signed number

To find the value for the 4-bit signed number 1000, we apply the two-step process to the number as follows.

1000 (original number)
0111 (flip bits)
1000 (add a 1 to the previous humber)

The resulting number 1000 is exactly the same as the original number! This, however, should not confuse us if
we follow exactly the instructions for the conversion process. We need to interpret the resulting number as an
unsigned number to determine the value. Interpreting the resulting number 1000 as an unsigned number gives us the
value of 8. Therefore, the original number, which is also 1000, is negative 8 (-8). .

Figure 4.6 shows the two’s complement numbers for four bits. The range goes from -8 to 7. In general, for an
n-bit two’s complement number, the range is from —2"* to 2"* — 1.

4-bit Binary | Two’s Complement
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

1 I I O O N B
Hwamm\lm\lmtﬂwaI—‘O

Figure 4.6 4-bit two’s complement numbers.

The nice thing about using two’s complement to represent negative numbers is that when we add a number with
the negative of the same number, the result is zero as expected. This is shown in the next example.

Example 4.3: Adding 4-bit signed numbers

Use 4-bit signed arithmetic to perform the following addition.

3 = 0011
+(=3) = +1101
0 = 10000

The result 10000 has five bits. But since we are using 4-bit arithmetic (that is, the two operands are 4-bits wide)
the result must also be in 4-bits. The leading 1 in the result is, therefore, an overflow bit. By dropping the leading
one, the remaining result 0000 is the correct answer for the problem. Although this addition resulted in an overflow
bit, by dropping this extra bit, we obtained the correct answer. .

Example 4.4: Adding 4-bit signed numbers

Use 4-bit signed arithmetic to perform the following addition.

Digital Logic and Microprocessor Design with VHDL Copyright Enoch Hwang
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6 = 0110
+3 = + 0011
9 # 1001

The result 1001 is a 9 if we interpret it as an unsigned number. However, since we are using signed numbers,
we need to interpret the result as a signed number. Interpreting 1001 as a signed number gives —7, which of course is
incorrect. The problem here is that the range for a 4-bit signed number is from -8 to +7, and +9 is outside of this
range. .

Although the addition in this example did not resulted in an overflow bit, but the final answer is incorrect. In
order to correct this problem, we need to add (at least) one extra bit by sign extending the number. The corrected
arithmetic is shown in Example 4.5.

Example 4.5: Adding 5-bit signed numbers

Use 5-bit signed arithmetic to perform the following addition.

6 = 00110
+3 = +00011
9 = 01001
The result 01001, when interpreted as a signed number, is 9. .

To extend a signed number, we need to add leading 0’s or 1’s depending on whether the original most
significant bit is a 0 or a 1. If the most significant bit is a 0, we sign extend the number by adding leading 0’s. If the
most significant bit is a 1, we sign extend the number by adding leading 1’s. By performing this sign extension, the
value of the number is not changed, as shown in Example 4.6.

Example 4.6: Performing sign extensions

Sign extend the numbers 10010 and 0101 to 8-bits.

For the number 10010, since the most significant bit is a 1, therefore, we need to add leading 1’s to make the
number 8-bits long. The resulting number is 11110010. For the number 0101, since the most significant bit is a 0,
therefore, we need to add leading 0’s to make the number 8-bits long. The resulting number is 00000101. The
following shows that the two resulting numbers have the same value as the two original numbers. Since the first
number is negative (because of the leading 1 bit) we need to perform the two-step process to evaluate its value. The
second number is positive, so we can evaluate its value directly.

Original Sign Original Sign
Number Extended Number Extended
10010 11110010 0101 00000101

Flip bits 01101 00001101
Add 1 01110 00001110
Value -14 -14 5 5

4.4 Subtractor

We can construct a one-bit subtractor circuit similar to the method used for constructing the full adder.
However, instead of the sum bit, s;, for the addition, we have a difference bit, d;, for the subtraction, and instead of
having carry-in and carry-out signals, we have borrow-in (b;) and borrow-out (b;.1) signals. So, when we subtract the
i" bit of the two operands, x; and y;, we get the difference of d; = x; — y;. If, however, the previous bit on the right has
to borrow from this i bit, then input b; will be set to a 1, and the equation for the difference will be d; = x; — b; — y;.
On the other hand, if the i bit has to borrow from the next bit on the left for the subtraction, then the output b.q will
be set to a 1. The value borrowed is a 2, and so the resulting equation for the difference will be d; = x; — b; + 2bj,; —
yi. Note that the symbols + and — used in this equation are for addition and subtraction, and not for logical
operations. The term 2b;, is “2 multiply by b;.1.” Since b, is a 1 when we have to borrow and we borrow a 2 each
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time, the equation just adds a 2 when there is a borrow. When there is no borrow, b;.; is 0, and so the term by,
cancels out to 0.

For example, consider the following subtraction of the two 4-bit binary numbers, X =0100 and Y = 0011:
\

b fi
o Moo
_ 0 0 1

0 0 1

1
0

e

Consider the bit position that is highlighted in blue. Since the subtraction for the previous bit on the right has to
borrow, b; is a 1. Moreover, b;,; is also a 1, because the current bit has to borrow from the next bit on the left. When
it borrows, it gets a 2. Therefore, di = x;—b; + 2bj,; —y;=0-1+2(1)-1=0.

The truth table for the 1-bit subtractor is shown in Figure 4.7(a), from which the equations for d; and bj., as
shown in Figure 4.7(b), are derived. From these two equations, we get the circuit for the subtractor, as shown in
Figure 4.7(c). Figure 4.7(d) shows the logic symbol for the subtractor.

Building a subtractor circuit for subtracting an n-bit operand can be done by daisy-chaining n 1-bit subtractor
circuits together, similar to the adder circuit shown in Figure 4.3. However, there is a much better subtractor circuit,
as shown in the next section.

Xi | Vi | bi| bis | di
olofo] 0o
olof1] 1 |1 di  =x'yibi + x'yibi' + xiyi'bi' + Xiyib;
ol1lo0] 1 [1 = (X'Yi + Xy )b+ (Y + xiyi)by
ol12] 1o = (Xi @ y)bi' + (X ® yi)'b;
1lolof o |1 =X @Y @b
110111010 bisy = Xi'yi'i + Xi'yibi'" + Xi'yibi + Xiyibj
111101010 = xibi(yi' +yi) + xi'Yi(bi" + bi) + yibi(xi" + X))
1]1]1] 1 ]1 = Xi'bi + Xi'yi + yib
(a) (b)
Xj Yi
bj
bi+1 )t )*I
I
Ll «— b, FS bj—
d,
| v
i?
(c) (d)

Figure 4.7 1-bit subtractor: (a) truth table; (b) equations for d; and b;.+; (c) circuit; (d) logic symbol.
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45 Adder-Subtractor Combination

It turns out that, instead of having to build a separate adder and subtractor units, we can modify the ripple-carry
adder (or the carry-lookahead adder) slightly to perform both operations. The modified circuit performs subtraction
by adding the negated value of the second operand. In other words, instead of performing the subtraction A — B, the
addition operation A + (- B) is performed.

Recall that in two’s complement representation, to negate a value involves inverting all the 0 bits to 1’s and 1’s
to 0’s, and then adding a 1. Hence, we need to modify the adder circuit so that we selectively can do either one of
two things: (1) flip the bits of the B operand and then add an extra 1 for the subtraction operation, or (2) not flip the
bits and not add an extra 1 for the addition operation. (({)\\

For this adder-subtractor combination circuit (in addition to the two input operands A and B), %J@ignal, S,
is needed to select which operation to perform. The assignment of the two operations to the °;(§(7:\\&J £5Is shown
in Figure 4.8(a). When s = 0, we want to perform an addition, and when s = 1, we want to‘perform a subtraction.
When s = 0, B does not need to be modified, and like the adder circuit from Section 4.2.?,&%5"'& carry-in signal
Co needs to be set to a 0. On the other hand, when s = 1, we need to invert the bits in B agﬂ\gqlé . The addition of a

2

S

a3/

1 is accomplished by setting the initial carry-in signal ¢, to a 1. Two circuits are reeds fof handling the above
situations: one for inverting the bits in B and one for setting cq. Both of these ciryyits%‘* ndent on s.

The truth table for these two circuits is shown in Figure 4.8(b). The/infﬁr rariable b is the i" bit of the B
operand. The output variable y; is the output from the circuit that either inve ‘Nm/oésﬁot invert the bits in B. From
this truth table, we can conclude that the circuit for y; is just a 2-input XOR gaﬁ\ hile the circuit for cq is just a
direct connection from s. Putting everything together, we obtain the adder-subtractor combination circuit (for four
bits), as shown in Figure 4.8(c). The logic symbol for the circuit is sh%\qu\—‘.\‘yre 4.8(d).

:\\\/

((;) s | bi | Vil o
s | Function Operation ﬁ 0j]0jO0]oO
Add F=A+B KQ 0ol1]1]0
1| Subtract | F=A+B'+1 N 1011
f\/ 1]11]0]1
(b)
aS b3
s |
S >
U %4 Jf4
¥ S
Unsigned_ _
Unsigned_ _ Cou_ FA L “—Overflow Adder
Overflow A __|Signed_ Subtractor
Overflow

Signed_ G
Overflow

<
<

izt
f f\\ thick lines
(d)

Figure 4.8 Adder-ztib r&uto\r\} ombination: (a) operation table; (b) truth table for y; and co; (c) circuit; (d) logic
symbol. <(\J

Notice the addérﬁ\z})agactor circuit in Figure 4.8(c) has two different overflow signals, Unsigned_Overflow and
Signed_Overflow. This is because the circuit can deal with both signed and unsigned numbers. When working with
unsigned numbers only, the output signal Unsigned_Overflow is sufficient to determine whether there is an overflow
or not. However, for signed numbers, we need to perform the Xor of Unsigned_Overflow with c;, producing the
Signed_Overflow signal in order to determine whether there is an overflow or not.

>
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For example, the valid range for a 4-bit signed number goes from —2° to 2° - 1 (i.e., from -8 to 7). Adding the
two signed numbers, 4 + 5 =9 should result in a signed number overflow, since 9 is outside the range. However, the
valid range for a 4-bit unsigned number goes from 0 to 2* — 1 (i.e., 0 to 15). If we treat the two numbers 4 and 5 as
unsigned numbers, then the result of adding these two unsigned numbers, 9, is inside the range. So when adding the
two numbers 4 and 5, the Unsigned Overflow signal should be de-asserted, while the Signed_Overflow signal
should be asserted. Performing the addition of 4 + 5 in binary as shown here:

C3
0/1 0 O
Unsigned * 071 0 1
Overflow™qn 1 9 0 1
. 0XOR1=1
Signed
Overflow

we get 0100 + 0101 = 1001, which produces a 0 for the Unsigned_Overflow signal. However, the addition produces
a 1 for c3 and xoring these two values, 0 for Unsigned Overflow and 1 for c; results in a 1 for the
Signed_Overflow signal.

In another example, adding the two 4-bit signed numbers, —4 + (-3) = —7 should not result in a signed overflow.
Performing the arithmetic in binary, -4 = 1100 and -3 = 1101, as shown here:

C3
1/1 0 0
Unsigned *+ 171 0 1
Overflow™ 1 1 \0 0 1
. 1XOR1=0
Signed
Overflow

we get 1100 + 1101 = 11001, which produces a 1 for both Unsigned_Overflow and cz. XORing these two values
together gives a 0 for the Signed_Overflow signal. On the other hand, if we treat the two binary numbers, 1100 and
1101, as unsigned numbers, then we are adding 12 + 13 = 25. Then 25 is outside the unsigned number range, and so
the Unsigned_Overflow signal should be asserted.

The behavioral VHDL code for the 4-bit adder-subtractor combination circuit is shown in Figure 4.9. The
GENERIC keyword declares a read-only constant identifier, n, of type INTEGER having a default value of 4. This
constant identifier then is used in the declaration of the STD_LOGIC_VECTOR size for the three vectors: A, B, and F.

The Unsigned_Overflow bit is obtained by performing the addition or subtraction operation using n + 1 bits.
The two operands are zero extended using the & symbol for concatenation before the operation is performed. The
result of the operation is stored in the n + 1 bit vector, result. The most significant bit of this vector, result(n), is the
Unsigned_Overflow bit.

To get the Signed_Overflow bit, we need to xoRr the Unsigned_Overflow bit with the carry bit, ¢z, from the
second-to-last bit slice. The c; bit is obtained just like how the Unsigned_Overflow bit is obtained, except that the
operation is performed on only the first n — 1 bits of the two operands. The vector c3 of length n is used for storing
the result of the operation. The Signed_Overflow signal is the Xor of result(n) with c3(n-1).

LI1BRARY I1EEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE 1EEE.STD_LOGIC_UNSIGNED.ALL;
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ENTITY AddSub IS
GENERIC(n: INTEGER :=4); -- default number of bits = 4
PORT(S: IN STD _LOGIC; -- select subtract signal
A: IN STD_LOGIC_VECTOR(n-1 DOWNTO 0);
B: IN STD_LOGIC_VECTOR(n-1 DOWNTO 0);
F: OUT STD_LOGIC_VECTOR(n-1 DOWNTO 0);
unsigned_overflow: OUT STD_LOGIC;
signed_overflow: OUT STD_LOGIC);
END AddSub;

ARCHITECTURE Behavioral OF AddSub 1S
-- temporary result for extracting the unsigned overflow bit
SIGNAL result: STD_LOGIC_VECTOR(n DOWNTO 0);
-— temporary result for extracting the c3 bit
SIGNAL c3: STD_LOGIC_VECTOR(n-1 DOWNTO 0);

BEGIN
PROCESS(S, A, B)
BEGIN
IF (S = "0") THEN -- addition

-— the two operands are zero extended one extra bit before adding
-- the & i1s for string concatination

result <= ("0" & A) + ("0" & B);

c3 <= ("0" & A(n-2 DOWNTO 0)) + ("0" & B(n-2 DOWNTO 0));

F <= result(n-1 DOWNTO 0); -- extract the n-bit result

unsigned_overflow <= result(n); -- get the unsigned overflow bit

signed_overflow <= result(n) XOR c3(n-1); -- get signed overflow bit
ELSE -- subtraction

-- the two operands are zero extended one extra bit before subtracting
-- the & is for string concatination

result <= ("0" & A) - (0" & B);

c3 <= ("0 & A(n-2 DOWNTO 0)) - (°0" & B(n-2 DOWNTO 0));

F <= result(n-1 DOWNTO 0); -- extract the n-bit result

unsigned_overflow <= result(n); -- get the unsigned overflow bit

signed_overflow <= result(n) XOR c3(n-1); -- get signed overflow bit
END IF;

END PROCESS;
END Behavioral;

Figure 4.9 Behavioral VHDL code for a 4-bit adder-subtractor combination component.

4.6 Arithmetic Logic Unit

The arithmetic logic unit (ALU) is one of the main components inside a microprocessor. It is responsible for
performing arithmetic and logic operations, such as addition, subtraction, logical AND, and logical or. The ALU,
however, is not used to perform multiplications or divisions. It turns out that, in constructing the circuit for the ALU,
we can use the same idea as for constructing the adder-subtractor combination circuit, as discussed in the previous
section. Again, we will use the ripple-carry adder as the building block and then insert some combinational logic
circuitry in front of the two input operands to each full adder. This way, the primary inputs will be modified
accordingly, depending on the operations being performed before being passed to the full adder. The general, overall
circuit for a 4-bit ALU is shown in Figure 4.10(a) and its logic symbol in Figure 4.10(b).
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As we can see in the Figure 4.10(a), the two combinational circuits in front of the full adder (FA) are labeled LE
and AE. The logic extender (LE) is for manipulating all logical operations; whereas, the arithmetic extender (AE) is
for manipulating all arithmetic operations. The LE performs the actual logical operations on the two primary
operands, a; and b;, before passing the result to the first operand, x;, of the FA. On the other hand, the AE only
modifies the second operand, b;, and passes it to the second operand, y;, of the FA where the actual arithmetic
operation is performed.

ag bs a, ba ay by ag bo
s
23 2
®)
2o
vy A VY V¥ y AR A A y A 4 ( \_/\\_,
H LE | [H AE H LE | |H AE H LE | [H AE H LE | [H AE N
X3 Y3 X2 Y2 Xy Y1 Xo X J
7
Unsigned_ Cs _ C3 | C P! e SO0
ognec FA e FA e FA  f—r Ea\ = cE

S
Signed_ AN/
Overflow X l l Q\\ /

’ " NG
@ (g\\/j
A\
Jvr4 Qﬁb\\

3
—>
Unsigned
S \
Overflow /-, ALU~>

N
Figure 4.10 4-bit ALU: (a) circuit; (b) i@n}c(:gﬁg{\

AN
g;@cuit‘ Uﬁ?at, to perform additions and subtractions, we only need to modify vy;
e frations can be done with additions. Thus, the AE only takes the second
operand of the primary input, b;, as/its thput and modifies the value depending on the operation being performed. Its
output is y;, and it is connected Tffm\e second operand input of the FA. As in the adder-subtractor circuit, the addition
is performed in the FA. Wheﬂarit@ne*’f operations are being performed, the LE must pass the first operand
unchanged from the primary%%\o the output x; for the FA.

Unlike the AE (whe: :t\oﬁ mééiﬁes the operand), the LE performs the actual logical operations. Thus, for
example, if we wan :sé.ym the operation A OR B, the LE for each bit slice will take the corresponding bits, a;

We saw from the adder-subtractor
(the second operand to the FA) so that

and b;, and or them together, Hence, one bit from both operands, a; and b;, are inputs to the LE. The output of the
LE is passed to the firs rand, x;, of the FA. Since this value is already the result of the logical operation, we do
not want the FA to modify it but to simply pass it on to the primary output, ;. This is accomplished by setting both
the second operand, y;, of the FA and ¢, to 0, since adding a 0 will not change the resulting value.
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The combinational circuit labeled CE (for carry extender) is for modifying the primary carry-in signal, c,, so
that arithmetic operations are performed correctly. Logical operations do not use the carry signal, so ¢, is set to 0 for
all logical operations.

R
: : (C p
S, | S1 | So | Operation Name | Operation X; (LE) Vi (AE) | & (CE) | @
0] o[ 0 |Pass Pass A to output a; 0 0 1IN s
0] 0] 1]AND A AND B a, AND by 0 0 h !
0 1]0]O0OR AORB a, OR by 0 0 4
0 [ 1] 1 |NOT A a 0 20(()
1 | 0o [ 0 | Addition A+B a b/~ \0
1 | 0 [ 1 | Subtraction A-B a b AP
1 | 1 | 0 [ Increment A+1 a “0. 1
1 1 1 | Decrement A-1 a (N4 0
NS
(@ Y
S | Si | So | b | /JT\Q\(\\/
0 X X X 0 ( ; /
1]ofo]o]o ,\y
S2 S So Xi 1 0 0 1 1 \) S2 | S1 ] So | G
0lo]o a 1 o102 0| x| x]o
0] 0] 1] ab 1 [o]1]1 }o v 1]ofo]o
0] 1] 0 |a+h 110 oo 1]of1]1
011 a 1 [ 1] o4l 1 [1]o0]1
1| x | x a 11 [1]alx 1]1]1]o0
1)1 \1 171
(b) ,%N\\J (d)
Figure 4.11 ALU operations: (a) function table; (mti’ table; (c) AE truth table; (d) CE truth table.

In the circuit shown in Figure 4.10, thre@sﬂés;ig)gf?,\‘ 2, S1, @nd S, are used to select the operations of the ALU.
With these three select lines, the ALU cirgF'r\"a‘njhyyzment up to eight different operations. Suppose that the
operations that we want to implement in ou rku are as defined in Figure 4.11(a). The x; column shows the values
that the LE must generate for the differgm%fgﬂons. The y; column shows the values that the AE must generate.
The ¢, column shows the carry signals M CE must generate.

For example, for the pass—thro@ﬁrat‘u , the value of a; is passed through without any modifications to x;.
For the AND operation, x; gets the,.@ﬁ{" a; AND b;. As mentioned before, both y; and ¢, are set to O for all of the
logical operations, because we d&(rﬁt\\ arﬁd‘ﬁe FA to change the results. The FA is used only to pass the results from
the LE straight through tg the: um{i} For the subtraction operation, instead of subtracting B, we want to add —-B.
Changing B to -B in two % ment format requires flipping the bits of B and then adding a 1. Thus, y; gets the
inverse of b;, and the 1 is Q;i))rough the carry-in, co. To increment A, we set y; to all 0’s, and add the 1 through
the carry-in, co. To decrement A, we add a -1 instead. Negative one in two’s complement format is a bit string with
all 1’s. Hence, we set y; to all 1’s and the carry-in ¢, to 0. For all the arithmetic operations, we need the first operand,
A, unchanged for the FA. Thus, x; gets the value of a; for all arithmetic operations.

Figure 4.11(b), (c) and (d) show the truth tables for the LE, AE, and CE, respectively. The LE circuit is derived
from the x; column of Figure 4.11(b); the AE circuit is derived from the y; column of Figure 4.11(c); and the CE
circuit is derived from the ¢, column of Figure 4.11(d). Notice that x; is dependent on five variables, s,, s3, So, a;, and
bi; whereas, y; is dependent on only four variables, s,, S1, S, and b;; and ¢, is dependent on only the three select lines,
Sy, S1, and . The K-maps, equations, and schematics for these three circuits are shown in Figure 4.12.

The behavioral VHDL code for the ALU is shown in Figure 4.13, and a sample simulation trace for all the
operations using the two inputs 5 and 3 is shown in Figure 4.14.
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$,'8,54a, s,'s,3,'h; s,'ab;

Xi = S.@ + Sp'ay + s1'aib; + $5's1a'b; + $5's1S0ay"
= S8 + So'a; + Sy'aib; + 5,'518"(D; + o)

(a)

Y;

Sob;

S8, 00 01 11 10

00

01

1

10 1 /& 3

$,8,'5y'D;

\(\Nj * g
Yi = S281S0 + S2Sobi’ + 5810l ¢\(\ /
2

= 8580(S1 + by') +5551's0'by

~—/

S
Co = 5551'Sp + 82S1Sg
= $5(s1 D sp) \)

(©)
Figure 4.12 K-maps, equations, and schematics for: (a) LE; (b) AE; and (c) CE.
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LIBRARY IEEE;

USE IEEE.STD_LOGIC 1164 .ALL;

-- The following package is needed so that the STD_LOGIC_VECTOR signals
-— A and B can be used in unsigned arithmetic operations.

USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY alu IS PORT (

S: IN STD_LOGIC_VECTOR(2 DOWNTO 0); -- select for operations
A, B: IN STD _LOGIC VECTOR(3 DOWNTO 0); -- input operands
F: OUT STD_LOGIC_VECTOR(3 DOWNTO 0)); -- output
END alu;
ARCHITECTURE Behavior OF alu 1S
BEGIN
PROCESS(S, A, B)
BEGIN
CASE S 1S
WHEN 000" => -- pass A through
F <= A;
WHEN "'001'" => -- AND
F <= A AND B;
WHEN "'010" => -- OR
F <= A OR B;
WHEN "'011" => -- NOT A
F <= NOT A;
WHEN *'100" => -- add
F <= A + B;
WHEN ""101" => -- subtract
F <= A - B;
WHEN "'110" => -- increment
F<=A+ 1;
WHEN OTHERS => -- decrement
F<=A-1;
END CASE;

END PROCESS;
END Behavior;

Figure 4.13 Behavioral VHDL code for an ALU.

Pass A AND OR NOT A Add  Subtract Increment Decrement
Mare: J, EDD]Dns ADD]Dns EDD]Dns BDDF
w5 | 0§ 1 2 5 You s ¥s ¥ 7 ¥
- A ]
- B 3
= F s Y 0 W7o A s W2 e s Y

Figure 4.14 Sample simulation trace with the two input operands, 5 and 3, for all of the eight operations.
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4.7 Decoder

A decoder, also known as a demultiplexer, asserts one out of n output lines, depending on the value of an m-
bit binary input data. In general, an m-to-n decoder has m input lines, A1, ..., Ao, and n output lines, Y4, ..., Yo,
where n = 2™, In addition, it has an enable line, E, for enabling the decoder. When the decoder is disabled with E set
to 0, all of the output lines are de-asserted. When the decoder is enabled, then the output line whose index is equal to
the value of the input binary data is asserted. For example, for a 3-to-8 decoder, if the input address v'ft\l then the
output line Ys is asserted (set to 1 for active-high), while the rest of the output lines are de- assertéu\‘ /@o for

active-high).
N

A decoder is used in a system having multiple components, and we want only one component:to bé selected or
enabled at any one time. For example, in a large memory system with multiple memory C[Nr' one memory
chip is enabled at a time. One output line from the decoder is connected to the enable input ﬁ memory chip.

Thus, an address presented to the decoder will enable that corresponding memory chip. The:
logic symbol for a 3-to-8 decoder are shown in Figure 4.15. 2 /A

= O

table, circuit, and

A larger size decoder can be implemented using several smaller decoders. Cg\ey smple, Figure 4.16 uses seven
1-to-2 decoders to implement a 3-to-8 decoder. The correct operation of this-Cirg| |t </[7eft as an exercise for the
reader.

The behavioral VHDL code for the 3-to-8 decoder is shown in FigL:;e\4(r\

(Y
E [As [A [A Y [ Ye[Ys [ Ya|Yap Yooy [ Yo
Olx|x|xt0oJofofofa]ojo]o
1]ofoJoJoJo[o]ofol0[o0]1
1{ofJof1]o]lofofofo0)yo[1]o
1/0]1]o0]o]o|ofol0l1]0]o0
1{of1]1]olof0f0m[o]o]o0
1{1]ofJoJolepokd]{o]o]o]o0
1{1]of1JoloJalo][o]o]o]o
1{1]1]oJol1]ofof[o]o]o]oO
t[1]1]1]fyofofoJofofo]oO
AZ Al AO
—>»E
Y, Y, Y, Y, Y, Y, Y, Y,
(©)

Figure 4.15 A 3-to-8 decoder: (a) truth table; (b) circuit; (c) logic symbol.
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Figure 4.16 A 3-to-8 decoder implemented with seven 1-to-2 decoders

-- A 3-to-8 decoder
LIBRARY IEEE;
USE I1EEE.STD LOGIC 1164 _ALL;

ENTITY Decoder IS PORT(

E: IN STD_LOGIC; -- enable

A: IN STD_LOGIC_VECTOR(2 DOWNTO 0); -- 3 bit address

Y: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)); -- data bus output
END Decoder;

ARCHITECTURE Behavioral OF Decoder IS

BEGIN
PROCESS (E, A)
BEGIN
IF (E = "0") THEN -- disabled
Y <= (OTHERS => "0"); -— 8-bit vector of 0O
ELSE
CASE A 1S -- enabled
WHEN ""000"™ => Y <= "'00000001";
WHEN 001" => Y <= "'00000010";
WHEN 010" => Y <= ""00000100";
WHEN 011" => Y <= "'00001000";
WHEN 100" => Y <= "'00010000";
WHEN 101" => Y <= ""00100000";
WHEN "110"™ => Y <= ""01000000";
WHEN "111" => Y <= ""10000000";
WHEN OTHERS => NULL;
END CASE;
END IF;

END PROCESS;
END Behavioral;

Figure 4.17 Behavioral VHDL code for a 3-to-8 decoder.
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4.8 Encoder

An encoder is almost like the inverse of a decoder where it encodes a 2"-bit input data into an n-bit code. The
encoder has 2" input lines and n output lines, as shown by the logic symbol in Figure 4.18(d) for n = 3. The
operation of the encoder is such that exactly one of the input lines should have a 1 while the remaining input lines
should have 0’s. The output is the binary value of the index of the input line that has the 1. The truth table for an 8-
to-3 encoder is shown in Figure 4.18(a). For example, when input I5 is a 1, the three output bits Y,, Yy, and Y, are set
to 011, which is the binary number for the index 3. Entries having multiple 1’s in the truth table inputs are ignored,
since we are assuming that only one input line can be a 1.

Looking at the three output columns in the truth table, we obtain the three equations shown in Figure 4.18(b)
and the resulting circuit in Figure 4.18(c). The logic symbol is shown in Figure 4.18(d).

Encoders are used to reduce the number of bits needed to represent some given data either in déu orin
data transmission. Encoders are also used in a system with 2" input devices, each of which may rf%d t\w ':efzzst for
service. One input line is connected to one input device. The input device requesting for serwcmﬁ |II e input
line that is connected to it. The corresponding n-bit output value will indicate to the system 3 chh 0f the 2" devices
is requesting for service. For example, if device 5 requests for service, it will assert the 15 Intbg(Yh he system will
know that device 5 is requesting for service, since the output will be 101 = 5. However, iz GJ\;V)orks correctly if
it is guaranteed that only one of the 2" devices will request for service at any one tlme é

incorrect. For example, if

devices 1 and 4 of the 8-to-3 encoder request for service at the same time, theri‘the /mg will also be 101, because
I, will assert the Y, signal, and I, will assert the Y, signal. To resolve this prob \1 priority is assigned to each of
the input lines so that when multiple requests are made, the encoder outputs the inde zvialue of the input line with the
highest priority. This modified encoder is known as a priority encoderw

\\/

If two or more devices request for service at the same time, then the output
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Figure 4.18 An 8- tc< 3 encotler: (a) truth table; (b) equations; (c) circuit; (d) logic symbol.
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4.8.1 * Priority Encoder

The truth table for an active-high 8-to-3 priority encoder is shown in Figure 4.19. The table assumes that input
I; has the highest priority, and I, has the lowest priority. For example, if the highest priority input asserted is I3, then
it doesn’t matter whether the lower priority input lines, I,, I, and Iy, are asserted or not; the output will be for that of
I, which is 011. Since it is possible that no inputs are asserted, there is an extra output, Z, that is needed to
differentiate between when no inputs are asserted and when one or more inputs are asserted. Z is set to a 1 when one
or more inputs are asserted; otherwise, Z is set to 0. When Z is 0, all of the Y outputs are meaningless.
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Figure 4.19 An 8-to-3 priority encoder truth table.

An easy way to derive the equations for the 8-to-3 priority encoder is to define a set of eight intermediate
variables, vy, ..., V7, such that vy is a 1 if I, is the highest priority 1 input. Thus, the equations for v, to v; are:

Vo=17"1g" 15" 13" 13" 1" 11" g
vi=17"1g" 15 14" 15" 1" 1y
Vo= 17" 16" 15" 14 15" 1,

V3 = |7I Iel |5' |4' |3

Vg4 = |7I Iel |5' |4

Vg = |7I Iel |5
Ve=171g
V7 = |7

Using these eight intermediate variables, the final equations for the priority encoder are similar to the ones for
the regular encoder, namely:

Yo=Vi+V3+Vs+Vy
Yi=Vo+Vy+vg+Vy
Y, =Vs+V5+ Vg +Vy

Finally, the equation for Z is simply

Z:|7+|6+|5+|4+|3+|2+|1+|0

4.9 Multiplexer

The multiplexer, or MUX for short, allows the selection of one input signal among n signals, where n > 1 and
is a power of two. Select lines connected to the multiplexer determine which input signal is selected and passed to
the output of the multiplexer. In general, an n-to-1 multiplexer has n data input lines, m select lines where m = log, n
(i.e., 2™ = n), and one output line. For a 2-to-1 multiplexer, there is one select line, s, to select between the two
inputs, dy and d;. When s = 0, the input line, do, is selected, and the data present on d, is passed to the output, y.
When s = 1, the input line, d;, is selected and the data on d; is passed to y. The truth table, equation, circuit, and
logic symbol for a 2-to-1 multiplexer are shown in Figure 4.20.
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s [di|do |y
O|0]|]0]O
OO0 ]|1]1
O(1]01]0
0 1 1 1 y = s'dy'dg + s'd1dg + sdqdg' + sdqdg
110]01]0O0 =s'dg(d;" + dy) + sdy(do' + dg)
110]11]0 =s'dy + sd;
111]01]1
11111
(a) (b)
dO
s y G
d1
© (d)

Constructing a larger-sized multiplexer, such as the 8-to-1 multiplexer, can/zﬁ K)ﬁ milarly. In addition to
having the eight data input lines, dy to d;, the 8-to-1 multiplexer has three (2° = select lines, sp, S1, and s,.
Depending on the value of the three select lines, one of the eight input lines will be se@gcted and the data on that
input line will be passed to the output. For example, if the value of the se'nc Ns 101, then the input line ds is
selected, and the data that is present on ds will be passed to the output.

The truth table, circuit, and logic symbol for the 8-to-1 multiplexer alt(‘ﬁ n/?n Figure 4.21. The truth table is
written in a slightly different format. Instead of including the d’s in the |@olumns and enumerating all 2** =
2048 rows (the eleven variables come from the eight d’s and the three (ﬂ e d’s are written in the entry under the
output column. For example, when the select line value is 101, the entry-under the output column is ds, which means
that y takes on the value of the input line ds. (\/

To understand the circuit in Figure 4.21(b), notice thafhv\ﬁAUgate acts as a switch and is turned on by one
combination of the three select lines. When a particular AND\J%}I&:OIE” rned on, the data at the corresponding d input
is passed through that AND gate. The outputs of the remaining A\'\m @gates are all 0’s.

w
N
[’
=
(7]
o
<<

Rl |lo|lo|lo|lo

Rlr|o|lor|—|lolo

Rlo|lk|lolk|o|r|lo
=

@ =

Figure 4.21 An 8-to-1 mm};@%r: (a) truth table; (b) circuit; (c) logic symbol.

Instead of using 4-input AND gates (where three of its inputs are used by the three select lines to turn it on) we
can use 2-input AND gates, as shown in Figure 4.22(a). This way the AND gate is turned on with just one line. The
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eight 2-input AND gates can be turned on individually from the eight outputs of a 3-to-8 decoder. Recall from
Section 4.7 that the decoder asserts only one output line at any time.

Larger multiplexers can also be constructed from smaller multiplexers. For example, an 8-to-1 multiplexer can
be constructed using seven 2-to-1 multiplexers, as shown in Figure 4.22(b). The four top-level 2-to-1 multiplexers
provide the eight data inputs and all are switched by the same least significant select line s,. This top level selects
one from each group of two data inputs. The middle level then groups the four outputs from the top level again into
groups of two, and selects one from each group using the select line s;. Finally, the multiplexer at the bottom level
uses the most significant select line s, to select one of the two outputs from the middle level multiplexers.

The VHDL code for an 8-bit wide 4-to-1 multiplexer is shown in Figure 4.23. Two different impler tlons of
the same multiplexer are shown. Figure 4.23(a) shows the architecture code written at the behavioral Ic\zﬂég’»ﬁ& it
uses a PROCESS statement. Inside the PROCESS block, a CASE statement is used to select between the fouir-chaices for
S. Figure 4.23(b) shows a dataflow level architecture code using a concurrent selected signal ass.g»%en tatement
using the keyword wiTH ... SELECT. In the first choice, if S is equal to 00, then the value DO i <sm@€d toY.IfS
does not match any one of the four choices, 00, 01, 10, and 11, then the WHEN OTHERS clause i $5 ffq d. The syntax
(oTHERS => 'U") straight quotes means to fill the entire vector with the value “U”. &

d7 dg ds dy d3 dp Clil do

w
Decoder
~NOUTRWNFRO

(a) SO ) (b)
Figure 4.22 An 8-to-1 multiplexer implemented using: (a) a 3 0 decoder; (b) seven 2-to-1 multiplexers.
X 4
)

-— A 4-to-1 8-bit wide multiplexe!
LIBRARY IEEE: »\jf\\\
USE IEEE.STD LOGIC_1164.ALL;

ENTITY Multiplexer 1S PORT Q

S: IN STD_Loelc_VECTOR(lgﬂ§7¢

N

-- select lines

DO, D1, D2, D3: IN STD_LOG VECTOR(? DOWNTO 0); -- data bus input
Y: OUT STD_LOGIC VECTC‘R(\ Dw\ﬁNTO 0)):; -- data bus output

END Multiplexer; “\\\\
-- Behavioral level co u;<i
ARCHITECTURE Behavn ral OfyMultlplexer 1S
BEGIN \\J>
PROCESS (S, D 1 ,D3)
BEGIN Qi:jzf
CASE S IS
WHEN "'00" => Y <= DO;
WHEN "'01" => Y <= D1;
WHEN "'10" => Y <= D2;
WHEN ""11" => Y <= D3;
WHEN OTHERS => Y <= (OTHERS => "U"); -- 8-bit vector of U
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END CASE;
END PROCESS;
END Behavioral;

@

-- Dataflow level code
ARCHITECTURE Dataflow OF Multiplexer 1S
BEGIN
WITH S SELECT Y <=
DO WHEN 00",
D1 WHEN "O1",
D2 WHEN "f10",
D3 WHEN 11",
(OTHERS => "U") WHEN OTHERS; -— 8-bit vector of U
END Dataflow;

(b)
Figure 4.23 VHDL code for an 8-bit wide 4-to-1 multiplexer: (a) behavioral level; (b) dataflow level.

4.9.1 * Using Multiplexers to Implement a Function

Multiplexers can be used to implement a Boolean function very easily. In general, for an n-variable function, a
2"-to-1 multiplexer (that is, a multiplexer with n select lines) is needed. An n-variable function has 2" minterms, and
each minterm corresponds to one of the 2" multiplexer inputs. The n input variables are connected to the n select
lines of the multiplexer. Depending on the values of the n variables, one data input line will be selected, and the
value on that input line is passed to the output. Therefore, all we need to do is to connect all of the data input lines to
either a 1 or a 0, depending on whether we want that corresponding minterm to be a 1-minterm or a O-minterm,
respectively.

Figure 4.24 shows the implementation of the 3-variable function, F (X, y, z) = X'y'z' + X'yz' + xy'z + xyz' + xyz.
The 1-minterms for this function are mg, m,, ms, mg, and m,, so the corresponding data input lines do, dy, ds, ds, and
d; are connected to a 1, while the remaining data input lines are connected to a 0. For example, the 0-minterm X'yz
has the value 011, which will select the ds input, so a 0 passes to the output. On the other hand, the 1-minterm xy'z
has the value 101, which will select the ds input, so a 1 passes to the output.

i
d,d,d; d

473727170

ol

Figure 4.24 Using an 8-to-1 multiplexer to implement the function F (X, y, z) = X'y'z' + X'yz' + Xy'z + xyz' + xyz.

4.10 Tri-state Buffer

A tri-state buffer, as the name suggests, has three states: 0, 1, and a third state denoted by Z. The value Z
represents a high-impedance state, which for all practical purposes acts like a switch that is opened or a wire that is
cut. Tri-state buffers are used to connect several devices to the same bus. A bus is one or more wire for transferring
signals. If two or more devices are connected directly to a bus without using tri-state buffers, signals will get
corrupted on the bus because the devices are always outputting either a 0 or a 1. However, with a tri-state buffer in
between, devices that are not using the bus can disable the tri-state buffer so that it acts as if those devices are
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physically disconnected from the bus. At any one time, only one active device will have its tri-state buffers enabled,
and thus, use the bus.

The truth table and symbol for the tri-state buffer is shown in Figure 4.25(a) and (b). The active-high enable line
E turns the buffer on or off. When E is de-asserted with a 0, the tri-state buffer is disabled, and the output y is in its
high-impedance Z state. When E is asserted with a 1, the buffer is enabled, and the output y follows the input d.

A circuit consisting of only logic gates cannot produce the high-impedance state required by the tri-state buffer,
since logic gates can only output a 0 or a 1. To provide the high impedance state, the tri-state buffer circuit uses two
transistors in conjunction with logic gates, as shown in Figure 4.25(c). Section 5.3 will discuss the operations of
these two transistors in detail. For now, we will keep it simple. The top PMOS transistor is enabled with a 0 at the
node labeled A, and when it is enabled, a 1 signal from Vcc passes down through the transistor to y. The bottom
NMOS transistor is enabled with a 1 at the node labeled B, and when it is enabled, a 0 signal from ground passes up
through the transistor to y. When the two transistors are disabled (with A =1 and B = 0) they will both output a high
impedance Z value; so y will have a Z value.

Having the two transistors, we need a circuit that will control these two transistors so that together they realize
the tri-state buffer function. The truth table for this control circuit is shown in Figure 4.25(d). The truth table is
derived as follows. When E = 0 (it does not matter what the input d is) we want both transistors to be disabled so
that the output y has the Z value. The PMQOS transistor is disabled when the input A = 1; whereas, the NMOS
transistor is disabled when the input B = 0. When E = 1 and d = 0, we want the output y to be a0. To geta 0 ony, we
need to enable the bottom NMOS transistor and disable the top PMOS transistor so that a 0 will pass through the
NMOS transistor to y. To get a 1 on y for when E = 1 and d = 1, we need to do the reverse by enabling the top
PMOS transistor and disabling the bottom NMOS transistor.

The resulting circuit is shown in Figure 4.25(c). When E = 0, the output of the NAND gate is a 1 regardless of
what the other input is, and so the top PMOS transistor is turned off. Similarly, the output of the AND gate is a 0, and
so the bottom NMOS transistor is also turned off. Thus, when E = 0, both transistors are off, so the output y is in the
Z state.

When E = 1, the outputs of both the NAND and AND gates are equal to d'. So if d = 0, the output of the two gates
are both 1, so the bottom transistor is turned on while the top transistor is turned off. Thus, y will have the value 0,
which is equal to d. On the other hand, if d = 1, the top transistor is turned on while the bottom transistor is turned
off, and y will have the value 1.

The behavioral VHDL code for an 8-bit wide tri-state buffer is shown in Figure 4.26.

E Vce

: g —— ] »—"-dl pwos EldAIBY
Ely ojoJ1]o0]z
0]z dﬁy — 0[1]1]0]z
1]d B [ nmos 1]0)J1(1]0
t[1]ofo]1

(a) (b) (©) (d)

Figure 4.25 Tri-state buffer: (a) truth table; (b) logic symbol; (c) circuit; (d) truth table for the control portion of the
tri-state buffer circuit.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164_ALL;

ENTITY TriState Buffer 1S PORT (
E: IN STD_LOGIC;
d: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
y: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));
END TriState Buffer;
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ARCHITECTURE Behavioral OF TriState Buffer IS
BEGIN
PROCESS (E, d)
BEGIN
IF (E = "1") THEN
y <= d;
ELSE
y <= (OTHERS => "Z%); -- to get 8 Z values
END IF;
END PROCESS;
END Behavioral;

Figure 4.26 VHDL code for an 8-bit wide tri-state buffer.

4.11 Comparator

Quite often, we need to compare two values for their arithmetic relationship (equal, greater, less than, etc.). A
comparator is a circuit that compares two binary values and indicates whether the relationship is true or not. To
compare whether a value is equal or not equal to a constant value, a simple AND gate can be used. For example, to
compare a 4-bit variable x with the constant 3, the circuit in Figure 4.27(a) can be used. The AND gate outputs a 1
when the input is equal to the value 3. Since 3 is 0011 in binary, therefore, x; and x, must be inverted.

The xOR and XNOR gates can be used for comparing inequality and equality, respectively, between two values.
The XOR gate outputs a 1 when its two input values are different. Hence, we can use one XOR gate for comparing
each bit pair of the two operands. A 4-bit inequality comparator is shown in Figure 4.27(b). Four XOR gates are used,
with each one comparing the same bit from the two operands. The outputs of the XOR gates are Ored together so that
if any bit pair is different then the two operands are different, and the resulting output is a 1. Similarly, an equality
comparator can be constructed using XNOR gates instead, since the XNOR gate outputs a 1 when its two input values
are the same.

To compare the greater-than or less-than relationships, we can construct a truth table and build the circuit from
it. For example, to compare whether a 4-bit value X is less than five, we get the truth table, equation, and circuit
shown in Figure 4.27(c).
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Figure 4.27 Simple 4-bit comparators for: (a) X = 3; (//'\25& ( \ <5,

Instead of constructing a comparator for a fixed <n/u\mb\ of bits for the input values, we often prefer to construct
an iterative circuit by constructing a 1-bit slice "o. paraton nd then daisy chaining n of them together to make an
n-bit comparator. The 1-bit slice comparator WI|| "Ne ( addition to the two input operand bits, x; and y;) a p; bit
that keeps track of whether all the prewoww smpared so far are true or not for that particular relationship.
The circuit outputs a 1 if p; = 1, and the relati ‘Shl J§'true for the current bit pair, x; and y;. Figure 4.28(a) shows a
1-bit slice comparator for the equal relationst :p\n e current bit pair, x; and y;, is equal, the XNOR gate will output a
1. Hence, pi+; = 1 if the current bit parb|s eQ nd-the previous bit pair, p;, is a 1. To obtain a 4-bit iterative equality
comparator, we connect four 1-bit equality.cc k{‘: ors in series, as shown in Figure 4.28(b). The initial p, bit must
be set to a 1. Thus, if all four bit pam,{ n the last bit, p4, will be a 1; otherwise, p, will be a 0.

=) i \\
pi+1—‘<:’_l_qj§,\>pi> L |EQ| Ps EQ| P |EQ| ! |EQ| Py g

< (a) g (b)
Figure 4.28 Iteratlvem\rr;p) ators: (a) 1-bit slice for x; = y;; (b) 4-bit X =Y.

Building an iterative comparator circuit for the greater-than relationship is slightly more difficult. The 1-bit slice
comparator circuit for the condition x; > y; is constructed as follows. In addition to the two operand input bits, x; and
y;, there are also two status input bits, g;, and e;,. Here, g, is a 1 if the condition x; > y; is true for the previous bit
slice; otherwise, g;, is a 0. Furthermore, e;, is a 1 if the condition x; = y; is true; otherwise, €, is a 0. The circuit also
has two status output bits, gou and ey, having the same meaning as the g;, and €;, signals. These two input and two
output status bits allow the bit slices to be daisy-chained together. Following the above description of the 1-bit slice,
we obtain the truth table shown in Figure 4.29(a). The equations for ey, and go: are shown in Figure 4.29(b), and the
1-bit slice circuit in Figure 4.29(c).
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In order for the bit slices to operate correctly, we need to perform the comparisons from the most significant bit
to the least significant bit. The complete 4-bit iterative comparator circuit for the condition x >y is shown in Figure

4.29(d). The initial values for g;, and e;, must be set to g;, =0 and e;, = 1.

If x =y, then the last e,y is a 1; otherwise, e, is a 0. If the last e, is a 0, then the last g, can be either a 1 or a
0. If x >y then gq is a 1; otherwise, go. is a 0. Notice that both e, and g, cannot be both 1’s. The operation of this

comparator circuit is summarized in Figure 4.29(e).

. @)
Gin | €in | Xi | Yi | Meaning | gout | €out (\\}>//\)
00 |x]|x < 0o (1S
0|1]0]o0 = 0| 1 RN Y4
0101 < 0]o (F\V
0110 > 10 22(0)
01 [1]1] = 0|1 AN\
1[0 [x[x] > 1[0 A
1 1| x| x| Invalid 1 1 7@
@ 7
gout eou N
Xiyi Qi '!\
0,6, \ 00 01 11 10 %e%\ 0 01 11 10
00 Q\)oo
,,,,,,,, N N
01 1 ((\\ 01 1 1
101 | 1| 1|2 Q 1 [t ] 1| 1] 1}
,,,,,,,, f((\/ |
10 1 1 1 1 \ 10

Gout = Gin + einxiyi' €out = Jin€in + einxi'yi' + EinXiYi

VN4
W\Q)
o)

D
NN
ANSRA
wivd
© f\( }\2»(}//%0
Gin Py S | - —D_D— Oout
A\ |
ﬁ B\ I out
e |
S
S
= oIl I 1
0 h gDUt > gout gout > gOth X > y
1&, > out N > Cout N > out N > Cout x=y
(d)
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Condition | equt | Gout
Invalid 1 1

X=y 1 0

X>y 0 1

X<y 0 0
(e)

Figure 4.29 Comparator for x > y: (a) truth table for a 1-bit slice; (b) K-maps and equations for go, and eqy; (C)
circuit for 1-bit slice; (d) 4-bit x > y comparator circuit; (e) operational table.

4.12 Shifter

The shifter is used for shifting bits in a binary word one position either to the left or to the right. The operations
for the shifter are referred to either as shifting or rotating, depending on how the end bits are shifted in or out. For a
shift operation, the two end bits do not wrap around; whereas for a rotate operation, the two end bits wrap around.
Figure 4.30 shows six different shift and rotate operations.

For example, for the “Shift left with 0” operation, all of the bits are shifted one position to the left. The original
leftmost bit is shifted out (i.e., discarded) and the rightmost bit is filled with a 0. For the “Rotate left” operation, all
of the bits are shifted one position to the left. However, instead of discarding the leftmost bit, it is shifted in as the
rightmost bit (i.e., it rotates around).

For each bit position, a multiplexer is used to move a bit from either the left or right to the current bit position.
The size of the multiplexer will determine the number of operations that can be implemented. For example, we can
use a 4-to-1 multiplexer to implement the four operations, as specified by the table in Figure 4.31(a). Two select
lines, s; and s, are needed to select between the four different operations. For a 4-bit operand, we will need to use
four 4-to-1 multiplexers, as shown in Figure 4.31(b). How the inputs to the multiplexers are connected will depend
on the given operations.

Operation Comment Example
Shift bits to the left one position. The 10110100
Shift left with 0 leftmost bit is discarded and the rightmost LAAAL LA A
bit is filled with a 0. X01101000«
. . Same as above, except that the rightmost bit 10110100
Shiftleftwith 1| s filled with a 1. ettt
Shift bits to the right one position. The 10110100
Shift right with 0 | rightmost bit is discarded and the leftmost AN
bit is filled with a 0. ~01011010%
e . Same as above, except that the leftmost bit is 10110100
Shiftrightwith 1| &\ /i a1 »1\].\&].\]})\].\()%
Shift bits to the left one position. The 10110100
Rotate left leftmost bit is moved to the rightmost bit 909993
positionl 0110100
Shift bits to the right one position. The 10110100
Rotate right rightmost bit is moved to the leftmost bit AN
positionl 1011010

Figure 4.30 Shifter and rotator operations.
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Operation

Pass through

Shift left and fill with 0
Shift right and fill with 0
Rotate right

R|r|lo|lo
ok |o|e

(@) R

in3/;|‘ﬁ2\\iﬁl ino
<
:: Y Cqopir Shifter

0
(o] u,,t;\“utz out; outy

s NI
: NV
N
(b) (Q\\ 7o
Figure 4.31 A 4-bit shifter: (a) operation table; (b) circuit; (c) logic symbol.(g

In this example, when s; = s = 0, we want to pass the bit straigh(@oy h without shifting (i.e., we want the
value from in; to pass to out;). Given s; = s, = 0, do of the multiplexer is:selected, hence, in; is connected to d, of
MUX;, which outputs to out;. For s; = 0 and s, = 1, we want to shi{ﬁ%ﬁye., we want the value from in; to pass to
outi.q). With s; = 0 and s = 1, d; of the multiplexer is s%@t\ed,vﬁe\\ref , in; is connected to d; of MUX;,1, which

Ositss

N

outputs to out;.;. For this selection, we also want to shift ino,\;, \>\ 1’'of MUX, is connected directly to a 0.

The behavioral VHDL code for an 8-bit shifter having the fo /ctions as defined in Figure 4.31(a) is shown in

<

Figure 4.32. WL

Y
LIBRARY IEEE; AN VA
USE IEEE.STD_LOGIC_1164.ALL; /J&~\}

ENTITY shifter IS PORT ( ﬁ§§§§;7 =
S: IN STD_LOGIC_VECTOR(1 BOWNTO 0); -- select for operations
input: IN STD_LOGIC_VECTOR(7 DOWNTO 0); -- input
output: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)); -- output

END shifter; )

Y4
USE IEEE.STD_LOGIC UNSIGNED.A L;C\
“Logic AL (\1)/0
\
)

I (O c

«/\
ARCHITECTURE BehaviO(fﬁF s%ifter IS
BEGIN =A\D)

PROCESS(S, inqgif
BEGIN ‘Q::;)
CASE S 1S
WHEN "'00" => -— pass through
output <= input;
WHEN 01" => -- shift left with O
output <= input(6 DOWNTO 0) & "0%;
WHEN 10" => -- shift right with O
output <= "0" & input(7 DOWNTO 1);
WHEN OTHERS => -- rotate right

output <= input(0) & input(7 DOWNTO 1);
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END CASE;
END PROCESS;
END Behavior;

Figure 4.32 Behavioral VHDL code for an 8-bit shifter having the operations as defined in Figure 4.31(a).

4.12.1 * Barrel Shifter

A barrel shifter is a shifter that can shift or rotate the data by any number of bits in a single operation. The
select lines for a barrel shifter are used, not to determine what kind of operations (shift or rotate) to perform as for
the general shifter, but rather, to determine how many bits to move. Hence, only one particular operation can be
implemented in a barrel shifter circuit. In general, an n-bit barrel shifter can shift the data bits by as much as n -1
bit distance away in one operation.

Figure 4.33(a) shows the operation table of a 4-bit barrel shifter implementing the rotate left operation. When
180 = 00, no rotation is performed (i.e., a pass through). When s;S, = 01, the data bits are rotated one position to the
left. When s;5, = 10, the data bits are rotated two positions to the left. The corresponding circuit is shown in Figure
4.33(b).

Select Operation Output
S1 So outs out, out; outy
00 No rotation ing in, ing ing
01 Rotate left by 1 bit position in, ing ing ing
10 Rotate left by 2 bit positions ing ing ing in,
11 Rotate left by 3 bit positions ing ing iny ing
(@)
in in in in

(b)
Figure 4.33 A 4-bit barrel shifter for the rotate left operation: (a) operation table; (b) circuit.

4.13 * Multiplier

In grade school, we were taught to multiply two numbers using a shift-and-add procedure. Regardless of
whether the two numbers are in decimal or binary, we use the same shift-and-add procedure for multiplying them. In
fact, multiplying with binary numbers is even easier, because you are always multiplying with either a 0 or a 1.
Figure 4.34(a) shows the multiplication of two 4-bit unsigned binary numbers—the multiplicand M (mzm,m;mg)
with the multiplier Q (gs29:00)—to produce the resulting product P (p7pspspapap2p1Po)- Notice that the intermediate
products are always either the same as the multiplicand (if the multiplier bit is a 1) or it is zero (if the multiplier bit
isa0).
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We can derive a combinational multiplication circuit based on this shift-and-add procedure, as shown in Figure
4.34(b). Each intermediate product is obtained by ANDing the multiplicand M with one bit of the multiplier g;. Since
g is always a 1 or a 0, the output of the AND gates is always either m; or 0. For example, bit zero of the first
intermediate product is obtained by ANDing mq with qp; bit one is obtained by ANDing m; with go; and so on. Hence,
the four bits for the first intermediate product are mgQe, MyQe, MiCe, and medo; the four bits for the second
intermediate product are ms(y, m,q:, M1q;, and meQs; and so on.

Multiple adders are used to sum all of the intermediate products together to give the final product. Each
intermediate product is shifted over to the correct bit position for the addition. For example, pq is just myQo; p: is the
sum of mQo and meQs; po is the sum of myge, M1Q; and meQ,; and so on. The four full adders (1-bit adders) in each
row are connected, as in the ripple-carry adder with each carry-out signal connected to the carry-in of the next full
adder. The carry-out of the last full adder is connected to the input of the last full adder in the row below. The last
carry-out from the last row of adders is the value for p; of the final product. As in the ripple-carry adder(&\ | of the

initial carry-ins, co, are setto a 0. (\\1 /\
NSNS
9 0

Multiplicand (M) 1101 m mal( my
Multiplier (Q) x 1011 X s ~G U Gy
1101 m30; (l\{g)%?‘a (o MoQo
Intermediate products J[ 1101 Mad; Myt (% o0t
0000 MaQz My Z@
+1101 +_My0s MoQs MiGs Mt
Product (P) 10001111 Pr Pe s \%\/03 PL Po

\Y%
(a) X

Figure 4.34 Multiplication: (a) method; (b) circuit.
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4.14 Summary Checklist
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Full adder

Ripple-carry adder
Carry-lookahead adder
Two’s complement

Sign extension
Subtractor

Arithmetic logic unit (ALU)
Arithmetic extender (AE)
Logic extender (LE)
Carry extender (CE)
Decoder

Encoder

Priority encoder
Multiplexer (MUX)
Tri-state buffer

Z value

Comparator

Shifter

Barrel Shifter

Multiplier
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4.15 Problems

4.1. Convert the following numbers to 12-bit binary numbers using two’s complement representation.
a) 2344
b) -2344
c) 234
d) BCdy
E) —47219

4.2. Convert the following two’s complement binary numbers to decimal, octal, and hexadecimal formats.
a) 1001011
b) 011110
c) 101101
d) 1101011001
e) 0110101100

4.3. Write the complete structural VHDL code for the full adder circuit shown in Figure 4.1(c).
4.4. Draw the smallest possible complete circuit for a 2-bit carry-lookahead adder.

4.5. Draw the complete circuit for a 4-bit carry-lookahead adder.

4.6. Derive the carry-lookahead equation and circuit for cs.

4.7. Show that when adding two n-bit signed numbers, A,...Aq and B,.;...Bg, producing the result, S;.;...Sq, the
Signed_Overflow flag can be deduced by the equation:
Signed_Overflow = A,.; XOR B,,.; XOR S;,.4 XOR S,

4.8. Draw the complete 4-bit ALU circuit having the following operations. Use K-maps to reduce all of the
equations to standard form.

w
N

w
=

w
o

Operations
B-1

A NOR B
A-B

A XNOR B
1

A NAND B
A+B

A

RIRPRFPIRFPIOOIO|IO
PP OO|IFRrFkIO|IO
PRI O IOk OO

4.9. Draw the complete 4-bit ALU circuit having the following operations. Don’t-care values are assigned to unused
select combinations. Use K-maps to reduce all of the equations to standard form.

S, | S1 | So Operations

0| 0| 0 | Pass A through the LE
0| 0| 1| PassB through the LE
0|1]0]|NOTA
0|1]1]|nNOTB
1/0|0]|A-B
1/0|1|B-A
111/0]|B+1
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4.10. Draw the complete 4-bit ALU circuit having the following operations. Use K-maps to reduce all of the
equations to standard form.

Sy | S1 | So | Operations
0|0 |0]AplusB

0| 0| 1] IncrementA
0|10 | IncrementB
01| 1]PassA
1/0|0|A-B
1/0|1]|AXxX0ORB
1/1|0|AANDB

4.11. Draw the complete 4-bit ALU circuit having the following operations. Use K-maps to reduce all of the
equations to standard form.

S, | S1 | So Operations
00| 0| PassA

0| 0] 1| PassB through the AE
0]|1]0]AplusB
O[1|1]A
1/0|0|AXxXORB
1/0]|1]|ANANDB
1/1|0|A-1
1/1|1|A-B

4.12. Given the following K-maps for the LE, AE, and CE of an ALU, determine the ALU operations assigned to
each of the select line combinations.

LE AE
ab, s,=0 s,=1 s,b,
S,y 00 01 11 10|00 01 11 10 S,S, 00 01 11 10
00 1 1 00 1 1 CE
SlsO
on * Y ' 01 s, \ 00 01 11 10
11 1 1 1 1 11 0 1
10 1 1 1 1 10| 1 1 1 1

4.13. A four-function ALU has the following equations for its LE, AE, and CE:

Xj = aj + S1'Sob;

Yi = S1'So’ + S1S0b;’

Co = S150

Determine the four functions in the correct order that are implemented in this ALU. Show all of your work.

4.14. Draw the circuit for the 2-to-4 decoder.
4.15. Derive the truth table for a 3-to-8 decoder using negative logic.
4.16. Draw the circuit for the 4-to-16 decoder using only 2-to-4 decoders.

4.17. Draw the circuit for the 4-to-2 priority encoder using only 2-input AND, 2-input OR, and NOT gates.
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4.18.
4.19.
4.20.
4.21.
4.22.
4.23.
4.24.
4.25.
4.26.
4.27.

4.28.
4.29.
4.30.

4.31.

4.32.

4.33.

Draw the circuit for an 8-to-3 priority encoder.

Draw the circuit for the 4-to-2 priority encoder using only 2-to-1 priority encoders and 2-to-1 multiplexers.
Write the behavioral VHDL code for the 8-to-3 priority encoder.

Draw the circuit for a 16-to-1 multiplexer using only 4-to-1 multiplexers.

Draw the circuit for a 16-to-1 multiplexer using only 2-to-1 multiplexers.

Use only 2-to-1 multiplexers to implement the function: f(w,x,y,z) = £(0,2,5,7,13,15).

Use only 2-to-1 multiplexers (as many as you need) to implement the function: F(x, y, z) =T1(0, 3, 4, 5, 7).
Use one 8-to-1 multiplexer to implement the function: F(x,y,z) = £(0,3,4,6,7).

Use 2-to-1 multiplexers to implement the function: F(x,y,z) = £(0,2,4,5).

Derive the truth table for comparing two unsigned 2-bit operands for the less-than-or-equal-to relationship.
Derive the equation and circuit from this truth table.

Construct the circuit for one bit slice of an n-bit magnitude comparator that compares x; > y;.

Draw the circuit for a 4-bit iterative comparator that tests for the greater-than-or-equal-to relationship.
Draw the circuit for a 4-bit shifter that realizes the following operation table:

w
N

w
=

w
o

Operation

Pass through

Rotate left

Shift right and fill with 1
Not used

Shift left and fill with 0
Pass through

Rotate right

Shift right and fill with 0

PRI OO|I0O|O
PP IO|IO(FkIFk|IO|O
RO IO IO|F|O

Draw a 4-bit shifter circuit for the following operational table. Use only the basic gates AND, OR, and NOT (i.e.
do not use multiplexers).

S; | So | Operation

Shift left fill with 0
Shift right fill with 0
Rotate left

Rotate right

PR O|O
ROk |O

Draw a 4-bit shifter circuit for the following operation table using only six 2-to-1 multiplexers.

Operation

Shift left fill with 0
Shift right fill with 0
Rotate left

Rotate right

Derive the truth table for the following combinational circuit. Write also the operation name for each row in
the table.
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MR

y3 yz y]_ yO

4.34. Draw a 4-bit barrel shifter circuit for the rotate right operation.
4.35. Draw the complete detail circuit diagram for the 4-bit multiplier based on the circuit shown in Figure 4.34(b).
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Index

2's complement. See Two's complement

A

Active-high, 3
Active-low, 3
Adder, 3, 11
carry-lookahead, 6
full, 3
ripple-carry, 5
AE. See Arithmetic logic unit.
ALU. See Arithmetic logic unit.
Arithmetic extender. See Arithmetic logic unit.
Arithmetic logic unit, 13
AE arithmetic extender, 13
CE carry extender, 14
LE logic extender, 13
Assert, 3

B
Barrel shifter, 31

C

Carry extender. See Arithmetic logic unit.
Carry-lookahead adder, 6
CE. See Arithmetic logic unit.
Combinational components, 3
Comparator, 26

D

De-assert, 3
Decoder, 18
Demultiplexer, 18
E
Encoder, 20
priority, 20
F
FA. See Full adder.
Full adder, 3
|

Iterative circuit, 27
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L

LE. See Arithmetic logic unit.
Logic extender. See Arithmetic logic unit.

M

Multiplexer, 21
Multiplier, 31
MUX. See Multiplexer.

N

Negative binary numbers, 7
Negative logic, 3

P

Positive logic, 3
Priority encoder, 20

R

Ripple-carry adder, 5
Rotating bits, 29
Rotator, 29

S

Shifter, 29
Shifting bits, 29
Sign extension, 9
Subtractor, 3, 9, 11

T

Tri-state buffer, 24
Two’s-complement, 7

\Y

VHDL code
3-t0-8 decoder, 19
4-to-1 multiplexer, 24
adder/subtractor, 13
arithmetic logic unit (ALU), 17
full adder, 5
shifter, 31
tri-state buffer, 26
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