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So far, we have been looking at the design of combinational circuits. We will now turn our attention to the 
design of sequential circuits. Recall that the outputs of sequential circuits are dependent on not only their current 
inputs (as in combinational circuits), but also on all their past inputs. Because of this necessity to remember the 
history of inputs, sequential circuits must contain memory elements. 

The car security system from Section 2.9 is an example of a combinational circuit. In that example, the siren is 
turned on when the master switch is on and someone opens the door. If you close the door afterwards, then the siren 
will turn off immediately. For a more realistic car security system, we would like the siren to remain on even if you 
close the door after it was first triggered. In order for this modified system to work correctly, the siren must be 
dependent on not only the master switch and the door switch but also on whether the siren is currently on or off. In 
other words, this modified system is a sequential circuit that is dependent on both the current and on the past inputs 
to the system. 

In order to remember this history of inputs, sequential circuits must have memory elements. Memory elements, 
however, are just like combinational circuits in the sense that they are made up of the same basic logic gates. What 
makes them different is in the way these logic gates are connected together. In order for a circuit to “remember” its 
current value, we have to connect the output of a logic gate directly or indirectly back to the input of that same gate. 
We call this a feedback loop circuit, and it forms the basis for all memory elements. Combinational circuits do not 
have any feedback loops. 

Latches and flip-flops are the basic memory elements for storing information. Hence, they are the fundamental 
building blocks for all sequential circuits. A single latch or flip-flop can store only one bit of information. This bit of 
information that is stored in a latch or flip-flop is referred to as the state of the latch or flip-flop. Hence, a single 
latch or flip-flop can be in either one of two states: 0 or 1. We say that a latch or a flip-flop changes state when its 
content changes from a 0 to a 1 or vice versa. This state value is always available at the output. Consequently, the 
content of a latch or a flip-flop is the state value, and is always equal to its output value. 

The main difference between a latch and a flip-flop is that for a latch, its state or output is constantly affected by 
its input as long as its enable signal is asserted. In other words, when a latch is enabled, its state changes 
immediately when its input changes. When a latch is disabled, its state remains constant, thereby, remembering its 
previous value. On the other hand, a flip-flop changes state only at the active edge of its enable signal, i.e., at 
precisely the moment when either its enable signal rises from a 0 to a 1 (referred to as the rising edge of the signal), 
or from a 1 to a 0 (the falling edge). However, after the rising or falling edge of the enable signal, and during the 
time when the enable signal is at a constant 1 or 0, the flip-flop’s state remains constant even if the input changes. 

In a microprocessor system, we usually want changes to occur at precisely the same moment. Hence, flip-flops 
are used more often than latches, since they can all be synchronized to change only at the active edge of the enable 
signal. This enable signal for the flip-flops is usually the global controlling clock signal. 

Historically, there are basically four main types of flip-flops: SR, D, JK, and T. The major differences between 
them are the number of inputs they have and how their contents change. Any given sequential circuit can be built 
using any of these types of flip-flops (or combinations of them). However, selecting one type of flip-flop over 
another type to use in a particular sequential circuit can affect the overall size of the circuit. Today, sequential 
circuits are designed mainly with D flip-flops because of their ease of use. This is simply a tradeoff issue between 
ease of circuit design versus circuit size. Thus, we will focus mainly on the D flip-flop. Discussions about the other 
types of flip-flops can be found in Section 6.14. 

In this chapter, we will look at how latches and flip-flops are designed and how they work. Since flip-flops are 
at the heart of all sequential circuits, a good understanding of their design and operation is very important in the 
design of microprocessors. 

6.1 Bistable Element 

Let us look at the inverter. If you provide the inverter input with a 1, the inverter will output a 0. If you do not 
provide the inverter with an input (that is neither a 0 nor a 1), the inverter will not have a value to output. If you 
want to construct a memory circuit using the inverter, you would want the inverter to continue to output the 0 even 
after you remove the 1 input. In order for the inverter to continue to output a 0, you need the inverter to self-provide 
its own input. In other words, you want the output to feed back the 0 to the input. However, you cannot connect the 
output of the inverter directly to its input, because you will have a 0 connected to a 1 and so creating a short circuit.  
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The solution is to connect two inverters in series, as shown in Figure 6.1. This circuit is called a bistable 
element, and it is the simplest memory circuit. The bistable element has two symmetrical nodes labeled Q and Q', 
both of which can be viewed as either an input or an output signal. Since Q and Q' are symmetrical, we can 
arbitrarily use Q as the state variable, so that the state of the circuit is the value at Q. Let us assume that Q originally 
has the value 0 when power is first applied to the circuit. Since Q is the input to the bottom inverter, therefore, Q' is 
a 1. A 1 going to the input of the top inverter will produce a 0 at the output Q, which is what we started off with. 
Hence, the value at Q will remain at a 0 indefinitely. Similarly, if we power-up the circuit with Q = 1, we will get Q' 
= 0, and again, we get a stable situation with Q remaining at a 1 indefinitely. Thus, the circuit has two stable states: 
Q = 0 and Q = 1; hence, the name “bistable.” 

Q

Q'  
Figure 6.1 Bistable element circuit. 

We say that the bistable element has memory because it can remember its state (i.e., keep the value at Q 
constant) indefinitely. Unfortunately, we cannot change its state (i.e., cannot change the value at Q). We cannot just 
input a different value to Q, because it will create a short circuit by connecting a 0 to a 1. For example, let us assume 
that Q is currently 0. If we want to change the state, we need to set Q to a 1, but in so doing we will be connecting a 
1 to a 0, thus creating a short. Another way of looking at this problem is that we can think of both Q and Q' as being 
the primary outputs, which means that the circuit does not have any external inputs. Therefore, there is no way for us 
to input a different value. 

6.2 SR Latch 

In order to change the state for the bistable element, we need to add external inputs to the circuit. The simplest 
way to add extra inputs is to replace the two inverters with two NAND gates, as shown in Figure 6.2(a). This circuit is 
called an SR latch. In addition to the two outputs Q and Q', there are two inputs S' and R' for set and reset, 
respectively. Just like the bistable element, the SR latch can be in one of two states: a set state when Q = 1, or a reset 
state when Q = 0. Following the convention, the primes in S and R denote that these inputs are active-low (i.e., a 0 
asserts them, and a 1 de-asserts them). 

To make the SR latch go to the set state, we simply assert the S' input by setting it to 0 (and de-asserting R'). It 
doesn’t matter what the other NAND gate input is, because 0 NAND anything gives a 1, hence Q = 1, and the latch is 
set. If S' remains at 0 so that Q (which is connected to one input of the bottom NAND gate) remains at 1, and if we 
now de-assert R' (i.e., set R' to a 1) then the output of the bottom NAND gate will be 0, and so, Q' = 0. This situation 
is shown in Figure 6.2(d) at time t0. From this current situation, if we now de-assert S' so that S' = R' = 1, the latch 
will remain in the set state because Q' (the second input to the top NAND gate) is 0, which will keep Q = 1, as shown 
at time t1. At time t2, we reset the latch by making R' = 0 (and S' = 1). With R' being a 0, Q' will go to a 1. At the top 
NAND gate, 1 NAND 1 is 0, thus forcing Q to go to 0. If we de-assert R' next so that, again, we have S' = R' = 1, this 
time the latch will remain in the reset state, as shown at time t3. 

Notice the two times (at t1 and t3) when both S' and R' are de-asserted (i.e., S' = R' = 1). At t1, Q is at a 1; 
whereas, at t3, Q is at a 0. Why is this so? What is different between these two times? The difference is in the value 
of Q immediately before those times. The value of Q right before t1 is 1; whereas, the value of Q right before t3 is 0. 
When both inputs are de-asserted, the SR latch remembers its previous state. Previous to t1, Q has the value 1, so at 
t1, Q remains at a 1. Similarly, previous to t3, Q has the value 0, so at t3, Q remains at a 0. 
 

Q

Q'

S'

R'  

S' R' Q Qnext Qnext' 
0 0 × 1 1 
0 1 × 1 0 
1 0 × 0 1 
1 1 0 0 1 
1 1 1 1 0 
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Figure 6.2 SR latch: (a) circuit using NAND gates; (b) truth table; (c) logic symbol; (d) sample trace. 

If both S' and R' are asserted (i.e., S' = R' = 0), then both Q and Q' are equal to a 1, as shown at time t4, since 0 
NAND anything gives a 1. Note that there is nothing wrong with having Q equal to Q'. It is just because we named 
these two points Q and Q' that we don’t like them to be equal. However, we could have used another name say, P 
instead of Q'. 

If one of the input signals is de-asserted earlier than the other, the latch will end up in the state forced by the 
signal that is de-asserted later, as shown at time t5. At t5, R' is de-asserted first, so the latch goes into the set state 
with Q = 1, and Q' = 0. 

A problem exists if both S' and R' are de-asserted at exactly the same time, as shown at time t6. Let us assume 
for a moment that both gates have exactly the same delay and that the two wire connections between the output of 
one gate to the input of the other gate also have exactly the same delay. Currently, both Q and Q' are at a 1. If we set 
S' and R' to a 1 at exactly the same time, then both NAND gates will perform a 1 NAND 1 and will both output a 0 at 
exactly the same time. The two 0’s will be fed back to the two gate inputs at exactly the same time, because the two 
wire connections have the same delay. This time around, the two NAND gates will perform a 1 NAND 0 and will both 
produce a 1 again at exactly the same time. This time, two 1’s will be fed back to the inputs, which again will 
produce a 0 at the outputs, and so on and on. This oscillating behavior, called the critical race, will continue 
indefinitely until one outpaces the other. If the two gates do not have exactly the same delay, then the situation is 
similar to de-asserting one input before the other, and so, the latch will go into one state or the other. However, since 
we do not know which is the faster gate, we do not know which state the latch will end up in. Thus, the latch’s next 
state is undefined. 

Of course, in practice, it is next to impossible to manufacture two gates and make the two connections with 
precisely the same delay. In addition, both S' and R' need to be de-asserted at exactly the same time. Nevertheless, if 
this circuit is used in controlling some mission-critical device, we don’t want even this slim chance to happen. 

In order to avoid this non-deterministic behavior, we must make sure that the two inputs are never de-asserted at 
the same time. Note that we do want the situation when both of them are de-asserted, as in times t1 and t3, so that the 
circuit can remember its current content. We want to de-assert one input after de-asserting the other, but just not de-
asserting both of them at exactly the same time. In practice, it is very difficult to guarantee that these two signals are 
never de-asserted at the same time, so we relax the condition slightly by not having both of them asserted together. 
In other words, if one is asserted, then the other one cannot be asserted. Therefore, if both of them are never asserted 
simultaneously, then they cannot be de-asserted at the same time. A minor side benefit for not having both of them 
asserted together is that Q and Q' are never equal to each other. Recall that, from the names that we have given these 
two nodes, we do want them to be inverses of each other. 

From the above analysis, we obtain the truth table in Figure 6.2(b) for the NAND implementation of the SR latch. 
In the truth table, Q and Qnext actually represent the same point in the circuit. The difference is that Q is the current 
value at that point, while Qnext is the new value to be updated in the next time period. Another way of looking at it is 
that Q is the input to a gate, and Qnext is the output from a gate. In other words, the signal Q goes into a gate, 
propagates through the two gates, and arrives back at Q as the new signal Qnext. Figure 6.2(c) shows the logic 
symbol for the SR latch. 
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The SR latch can also be implemented using NOR gates, as shown in Figure 6.3(a). The truth table for this 
implementation is shown in Figure 6.3(b). From the truth table, we see that the main difference between this 
implementation and the NAND implementation is that, for the NOR implementation, the S and R inputs are active-
high, so that setting S to 1 will set the latch, and setting R to 1 will reset the latch. However, just like the NAND 
implementation, the latch is set when Q = 1 and reset when Q = 0. The latch remembers its previous state when S = 
R = 0. When S = R = 1, both Q and Q' are 0. The logic symbol for the SR latch using NOR implementation is shown 
in Figure 6.3(c). 

Q

Q'

R

S  

(a) 

S R Q Qnext Qnext' 
0 0 0 0 1 
0 0 1 1 0 
0 1 × 0 1 
1 0 × 1 0 
1 1 × 0 0 

(b) 

Q

Q'

S

R  
 

(c) 

Figure 6.3 SR latch: (a) circuit using NOR gates; (b) truth table; (c) logic symbol. 

6.3 SR Latch with Enable 

The SR latch is sensitive to its inputs all the time. In other words, Q will always change when either S or R is 
asserted. It is sometimes useful to be able to disable the inputs so that asserting them will not cause the latch to 
change state but to keep its current state. Of course, this is achieved by de-asserting both S and R. Hence, what we 
want is just one enable signal that will de-assert both S and R. The SR latch with enable (also known as a gated SR 
latch) shown in Figure 6.4(a) accomplishes this by adding two extra NAND gates to the original NAND-gate 
implementation of the latch. These two new NAND gates are controlled by the enable input, E, which determines 
whether the latch is enabled or disabled. When E = 1, the circuit behaves like the normal NAND implementation of 
the SR latch, except that the new S and R inputs are active-high rather than active-low. When E = 0, then S' = R' = 1, 
and the latch will remain in its previous state, regardless of the S and R inputs. The truth table and the logic symbol 
for the SR latch with enable is shown in Figure 6.4(b) and (c), respectively. 

A typical operation of the latch is shown in the sample trace in Figure 6.4(d). Between t0 and t1, E = 0, so 
changing the S and R inputs do not affect the output. Between t1 and t2, E = 1, and the trace is similar to the trace of 
Figure 6.2(d) except that the input signals are inverted. 
 



Chapter 6 – Latches and Flip-Flops  Page 7 of 27 

Digital Logic and Microprocessor Design with VHDL  Copyright Enoch Hwang 

S

R

Q

Q'

E

R'

S'

 

(a) 

E S R Q Qnext Qnext' 
0 × × 0 0 1 
0 × × 1 1 0 
1 0 0 0 0 1 
1 0 0 1 1 0 
1 0 1 × 0 1 
1 1 0 × 1 0 
1 1 1 × 1 1 

(b) 

Q
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S
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(c) 

S

R

Q

Q'
t1

Undefined

Undefined

t2

E

t0  

(d) 

Figure 6.4 SR latch with enable: (a) circuit using NAND gates; (b) truth table; (c) logic symbol; (d) sample trace. 

6.4 D Latch 

Recall from Section 6.2 that the disadvantage with the SR latch is that we need to ensure that the two inputs, S 
and R, are never de-asserted at exactly the same time, and we said that we can guarantee this by not having both of 
them asserted. This situation is prevented in the D latch by adding an inverter between the original S' and R' inputs. 
This way, S' and R' will always be inverses of each other, and so, they will never be asserted together. The circuit 
using NAND gates and the inverter is shown in Figure 6.5(a). There is now only one input D (for data). When D = 0, 
then S' = 1 and R' = 0, so this is similar to resetting the SR latch by making Q = 0. Similarly, when D = 1, then S' = 0 
and R' = 1, and Q will be set to 1. From this observation, we see that Qnext always gets the same value as the input D 
and is independent of the current value of Q. Hence, we obtain the truth table for the D latch, as shown in Figure 
6.5(b). 

Comparing the truth table for the D latch shown in Figure 6.5(b) with the truth table for the SR latch shown in 
Figure 6.2(b), it is obvious that we have eliminated not just one, but three rows, where S' = R'. The reason for adding 
the inverter to the SR-latch circuit was to eliminate the row where S' = R' = 0. However, we still need to have the 
other two rows where S' = R' = 1 in order for the circuit to remember its current value. By not being able to set both 
S' and R' to 1, this D-latch circuit has now lost its ability to remember. Qnext cannot remember the current value of Q, 
instead, it will always follow D. The end result is like having a piece of wire where the output is the same as the 
input! 

Q

Q'

S'

R'D  

(a) 

D Q Qnext Qnext' 
0 × 0 1 
1 × 1 0 

 

(b) 

Q

Q'

D

 
 

(c) 

Figure 6.5 D latch: (a) circuit using NAND gates; (b) truth table; (c) logic symbol. 
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6.5 D Latch with Enable 

In order to make the D latch remember the current value, we need to connect Q (the current state value) back to 
the input D, thus creating another feedback loop. Furthermore, we need to be able to select whether to loop Q back 
to D or input a new value for D. Otherwise, like the bistable element, we will not be able to change the state of the 
circuit. One way to achieve this is to use a 2-input multiplexer to select whether to feedback the current value of Q 
or pass an external input back to D. The circuit for the D latch with enable (also known as a gated D latch) is 
shown in Figure 6.6(a). The external input becomes the new D input, the output of the multiplexer is connected to 
the original D input, and the select line of the multiplexer is the enable signal E. 

When the enable signal E is asserted (E = 1), the external D input passes through the multiplexer, and so Qnext 
(i.e., the output Q) follows the D input. On the other hand, when E is de-asserted (E = 0), the current value of Q 
loops back as the input to the circuit, and so Qnext retains its last value independent of the D input. 

When the latch is enabled, the latch is said to be open, and the path from the input D to the output Q is 
transparent. In other words, Q follows D. Because of this characteristic, the D latch with enable circuit is often 
referred to as a transparent latch. When the latch is disabled, it is closed, and the latch remembers its current state. 
The truth table and the logic symbol for the D latch with enable are shown in Figure 6.6(b) and (c). A sample trace 
for the operation of the D latch with enable is shown in Figure 6.6(d). Between t0 and t1, the latch is enabled with E 
= 1, so the output Q follows the input D. Between t1 and t2, the latch is disabled, so Q remains stable even when D 
changes. 

An alternative way to construct the D latch with enable circuit is shown in Figure 6.7. Instead of using the 2-
input multiplexer, as shown in Figure 6.6(a), we start with the SR latch with enable circuit of Figure 6.4(a), and 
connect the S and R inputs together with an inverter. The functional operations of these two circuits are identical. 

 

Q
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D

E
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s

0
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(a) 

E D Q Qnext Qnext' 
0 × 0 0 1 
0 × 1 1 0 
1 0 × 0 1 
1 1 × 1 0 

 

(b) 

Q

Q'

D

E
 

 

(c) 

E

D

Q

Q'
t0 t1 t2 t3  

(d) 

Figure 6.6 D latch with enable: (a) circuit; (b) truth table; (c) logic symbol; (d) sample trace. 
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Figure 6.7 D latch with enable circuit using four NAND gates. 

6.6 Clock 

Latches are known as level-sensitive because their outputs are affected by their inputs as long as they are 
enabled. Their memory state can change during this entire time when the enable signal is asserted. In a computer 
circuit, however, we do not want the memory state to change at various times when the enable signal is asserted. 
Instead, we like to synchronize all of the state changes to happen at precisely the same moment and at regular 
intervals. In order to achieve this, two things are needed: (1) a synchronizing signal, and (2) a memory circuit that is 
not level-sensitive. The synchronizing signal, of course, is the clock, and the non-level-sensitive memory circuit is 
the flip-flop. 

The clock is simply a very regular square wave signal, as shown in Figure 6.8. We call the edge of the clock 
signal when it changes from 0 to 1 the rising edge. Conversely, the falling edge of the clock is the edge when the 
signal changes from 1 to 0. We will use the symbol  to denote the rising edge and  for the falling edge. In a 
computer circuit, either the rising edge or the falling edge of the clock can be used as the synchronizing signal for 
writing data into a memory element. This edge signal is referred to as the active edge of the clock. In all of our 
examples, we will use the rising clock edge as the active edge. Therefore, at every rising edge, data will be clocked 
or stored into the memory element. 

A clock cycle is the time from one rising edge to the next rising edge or from one falling edge to the next falling 
edge. The speed of the clock, measured in hertz (Hz), is the number of cycles per second. Typically, the clock speed 
for a microprocessor in an embedded system runs around 20 MHz, while the microprocessor in a personal computer 
runs upwards of 2 GHz and higher. A clock period is the time for one clock cycle (seconds per cycle), so it is just 
the inverse of the clock speed. 

The speed of the clock is determined by how fast a circuit can produce valid results. For example, a two-level 
combinational circuit will have valid results at its output much sooner than, say, an ALU can. Of course, we want 
the clock speed to be as fast as possible, but it can only be as fast as the slowest circuit in the entire system. We want 
the clock period to be the time it takes for the slowest circuit to get its input from a memory element, operate on the 
data, and then write the data back into a memory element. More will be said on this in later sections. 

Figure 6.9 shows a VHDL description of a clock-divider circuit that roughly cuts a 25 MHz clock down to 1 Hz. 

One Clock Cycle

Falling Edge Rising Edge  
Figure 6.8 Clock signal. 

LIBRARY IEEE; 
USE  IEEE.STD_LOGIC_1164.ALL; 

ENTITY Clockdiv IS PORT ( 
 Clk25Mhz: IN STD_LOGIC; 
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 Clk: OUT STD_LOGIC); 
END Clockdiv; 

ARCHITECTURE Behavior OF Clockdiv IS 
 CONSTANT max: INTEGER := 25000000; 
 CONSTANT half: INTEGER := max/2; 
 SIGNAL count: INTEGER RANGE 0 TO max; 
BEGIN 
 PROCESS 
 BEGIN 
  WAIT UNTIL Clk25Mhz'EVENT and Clk25Mhz = '1'; 
  IF count < max THEN 
   count <= count + 1; 
  ELSE 
   count <= 0; 
  END IF; 
  IF count < half THEN 
   Clk <= '0'; 
  ELSE 
   Clk <= '1'; 
  END IF; 
 END PROCESS; 
END Behavior; 

Figure 6.9 VHDL behavioral description of a clock-divider circuit. 

6.7 D Flip-Flop 

Unlike the latch, a flip-flop is not level-sensitive, but rather edge-triggered. In other words, data gets stored 
into a flip-flop only at the active edge of the clock. An edge-triggered D flip-flop achieves this by combining in 
series a pair of D latches. Figure 6.10(a) shows a positive edge-triggered D flip-flop, where two D latches are 
connected in series. A clock signal Clk is connected to the E input of the two latches: one directly, and one through 
an inverter.  

The first latch is called the master latch. The master latch is enabled when Clk = 0 because of the inverter, and 
so QM follows the primary input D. However, the signal at QM cannot pass over to the primary output Q, because 
the second latch (called the slave latch) is disabled when Clk = 0. When Clk = 1, the master latch is disabled, but the 
slave latch is enabled so that the output from the master latch, QM, is transferred to the primary output Q. The slave 
latch is enabled all the while that Clk = 1, but its content changes only at the rising edge of the clock, because once 
Clk is 1, the master latch is disabled, and the input to the slave latch, QM, will be constant. Therefore, when Clk = 1 
and the slave latch is enabled, the primary output Q will not change because the input QM is not changing. 

The circuit shown in Figure 6.10(a) is called a positive edge-triggered D flip-flop because the primary output Q 
on the slave latch changes only at the rising edge of the clock. If the slave latch is enabled when the clock is low 
(i.e., with the inverter output connected to the E of the slave latch), then it is referred to as a negative edge-
triggered flip-flop. The circuit is also referred to as a master-slave D flip-flop because of the two D latches used in 
the circuit. 

Figure 6.10(b) shows the operation table for the D flip-flop. The  symbol signifies the rising edge of the 
clock. When Clk is either at 0 or 1, the flip-flop retains its current value (i.e., Qnext = Q). Qnext changes and follows 
the primary input D only at the rising edge of the clock. The logic symbol for the positive edge-triggered D flip-flop 
is shown in Figure 6.10(c). The small triangle at the clock input indicates that the circuit is triggered by the edge of 
the signal, and so it is a flip-flop. Without the small triangle, the symbol would be that for a latch. If there is a circle 
in front of the clock line, then the flip-flop is triggered by the falling edge of the clock, making it a negative edge-
triggered flip-flop. Figure 6.10(d) shows a sample trace for the D flip-flop. Notice that when Clk = 0, QM follows D, 
and the output of the slave latch, Q, remains constant. On the other hand, when Clk = 1, Q follows QM, and the 
output of the master latch, QM, remains constant. 
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Figure 6.10 Master-slave positive edge-triggered D flip-flop: (a) circuit using D latches; (b) operation table; (c) 
logic symbol; (d) sample trace. 

Figure 6.11 compares the different operations between a latch and a flip-flop. In Figure 6.11(a), we have a D 
latch with enable, a positive edge-triggered D flip-flop, and a negative edge-triggered D flip-flop, all having the 
same D input and controlled by the same clock signal. Figure 6.11(b) shows a sample trace of the circuit’s 
operations. Notice that the gated D latch, Qa, follows the D input as long as the clock is high (between times t0 and t1 
and times t2 and t3). The positive edge-triggered flip-flop, Qb, follows the D input only at the rising edge of the clock 
at time t2, while the negative edge-triggered flip-flop, Qc, follows the D input only at the falling edge of the clock at 
times t1 and t3. 
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Figure 6.11 Comparison of a gated latch, a positive edge-triggered flip-flop, and a negative edge-triggered flip-flop: 
(a) circuit; (b) sample trace. 

6.7.1 * Alternative Smaller Circuit 

Not all master-slave flip-flops are edge-triggered. For instance, using two SR latches to construct a master-slave 
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flip-flop results in a flip-flop that is level-sensitive. Conversely, an edged-triggered D flip-flop can be constructed 
using SR latches instead of the master-slave D latches. 

The circuit shown in Figure 6.12 shows how a positive edge-triggered D flip-flop can be constructed using three 
interconnected SR latches. The advantage of this circuit is that it uses only 6 NAND gates (26 transistors) as opposed 
to 11 gates (38 transistors) for the master-slave D flip-flop shown in Figure 6.10(a). The operation of the circuit is as 
follows. When Clk = 0, the outputs of gates 2 and 3 will be 1 (since 0 NAND x = 1). With n2 = n3 = 1, this will keep 
the output latch (comprising of gates 5 and 6) in its current state. At the same time, n4 = D' since one input to gate 4 
is n3, which is a 1 (1 NAND x = x'). Similarly, n1 = D since n2 = 1, and the other input to gate 1 is n4, which is D' 
(again 1 NAND x = x'). 

When Clk changes to 1, n2 will be equal to D' because 1 NAND n1 = n1', and n1 = D. Similarly, n3 will be equal to 
D when Clk changes to 1 because the other two inputs to gate 3 are both D'. Therefore, if Clk = 1 and D = 0, then n2 
(which is equal to D') will be 1 and n3 (which is equal to D) will be 0. With n2 = 1 and n3 = 0, this will de-assert S' 
and assert R', thus resetting the output latch Q to 0. On the other hand, if Clk = 1 and D = 1, then n2 (which is equal 
to D') will be 0 and n3 (which is equal to D) will be 1. This will assert S' and de-assert R'; thus setting the output 
latch Q to 1. So at the rising edge of the Clk signal, Q will follow D. 

The setting and resetting of the output latch occurs only at the rising edge of the Clk signal, because once Clk is 
at a 1 and remains at a 1, changing D will not change n2 or n3. The reason, as noted in the previous paragraph, is that 
n2 and n3 are always inverses of each other. Furthermore, the following argument shows that both n2 and n3 will 
remain constant even if D changes. Let us first assume that n2 is a 0. If n2 = 0, then n3 (the output of gate 3) will 
always be a 1 (since 0 NAND x = 1), regardless of what n4 (the third input to gate 3) may be. Hence, if n4 (the output 
of gate 4) cannot affect n3, then D (the input to gate 4) also cannot affect either n2 or n3. On the other hand, if n2 = 1, 
then n3 = 0 (n3 = n2'). With a 0 from n3 going to the input of gate 4, the output of gate 4 at n4 will always be a 1 (0 
NAND x = 1), regardless of what D is. With the three inputs to gate 3 being all 1’s, n3 will continue to be 0. 
Therefore, as long as Clk = 1, changing D will not change n2 or n3. And if n2 and n3 remain stable, then Q will also 
remain stable for the entire time that Clk is 1. 

D

Clk

Q

Q'3

4

6

52

1

n3

n2

Output Latch

Reset Latch

Set Latch

R'

S'

n4

n1

(D')

(D)

(D)

(D')

 
Figure 6.12. Positive edge-triggered D flip-flop. 

6.8 D Flip-Flop with Enable 

So far, with the construction of the different memory elements, it seems like every time we add a new feature 
we have also lost a feature that we need. The careful reader will have noticed that, in building the D flip-flop, we 
have again lost the most important property of a memory element—it can no longer remember its current content! 
At every active edge of the clock, the D flip-flop will load in a new value. So how do we get it to remember its 
current value and not load in a new value? 

The answer, of course, is exactly the same as what we did with the D latch, and that is by adding an enable 
input, E, through a 2-input multiplexer, as shown in Figure 6.13(a). When E = 1, the primary input D signal will 
pass to the D input of the flip-flop, thus updating the content of the flip-flop at the active edge. When E = 0, the 
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current content of the flip-flop at Q is passed back to the D input of the flip-flop, thus keeping its current value. 
Notice that changes to the flip-flop value occur only at the active edge of the clock. Here, we are using the rising 
edge as the active edge. The operation table and the logic symbol for the D flip-flop with enable is shown in Figure 
6.13(b) and (c) respectively. 
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Figure 6.13 D flip-flop with enable: (a) circuit; (b) operation table; (c) logic symbol. 

6.9 Asynchronous Inputs 

Flip-flops (as we have seen so far) change states only at the rising or falling edge of a synchronizing clock 
signal. Many circuits require the initialization of flip-flops to a known state that is independent of the clock signal. 
Sequential circuits that change states whenever a change in input values occurs that is independent of the clock are 
referred to as asynchronous sequential circuits. Synchronous sequential circuits, on the other hand, change states 
only at the active edge of the clock signal. Asynchronous inputs usually are available for both flip-flops and latches, 
and they are used to either set or clear the storage element’s content that is independent of the clock. 

Figure 6.14(a) shows a gated D latch with asynchronous active-low Set' and Clear' inputs, and (b) is the logic 
symbol for it. Figure 6.14(c) is the circuit for the D edge-triggered flip-flop with asynchronous Set' and Clear' 
inputs, and (d) is the logic symbol for it. When Set' is asserted (set to 0) the content of the storage element is set to 1 
immediately (i.e., without having to wait for the next rising clock edge), and when Clear' is asserted (set to 0) the 
content of the storage element is set to 0 immediately. 
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Figure 6.14 Storage elements with asynchronous inputs: (a) D latch with active-low set and clear; (b) logic symbol 
for (a); (c) D edge-triggered flip-flop with active-low set and clear; (d) logic symbol for (c). 

6.10 Description of a Flip-Flop 

Combinational circuits can be described with either a truth table or a Boolean equation. For describing the 
operation of a flip-flop or any sequential circuit in general, we use a characteristic table, a characteristic equation, a 
state diagram, or an excitation table, as discussed in the following subsections.  

6.10.1 Characteristic Table 

The characteristic table specifies the functional behavior of the flip-flop. It is a simplified version of the flip-
flop’s operational table by only listing how the state changes at the active clock edge. The table has the flip-flop’s 
input signal(s) and current state (Q) listed in the input columns, and the next state (Qnext) listed in the output column. 
Qnext' is always assumed to be the inverse of Qnext, so it is not necessary to include this output column. The clock 
signal is also not included in the table, because it is a signal that we do not want to modify. Nevertheless, the clock 
signal is always assume to exist. Furthermore, since all state changes for a flip-flop (i.e., changes to Qnext) occur at 
the active edge of the clock, therefore it is not necessary to list the situations from the operation table for when the 
clock is at a constant value. 

The characteristic table for the D flip-flop is shown in Figure 6.15(a). It has two input columns (the input signal 
D, and the current state Q) and one output column for Qnext. From the operation table for the D flip-flop shown in 
Figure 6.10(b), we see that there are only two rows where Qnext is affected during the rising clock edge. Hence, these 
are the only two rows inserted into the characteristic table. 

The characteristic table is used in the analysis of sequential circuits to answer the question of what is the next 
state, Qnext, when given the current state, Q, and input signals (D in the case of the D flip-flop). 

6.10.2 Characteristic Equation 

The characteristic equation is simply the Boolean equation that is derived directly from the characteristic 
table. Like the characteristic table, the characteristic equation specifies the flip-flop’s next state, Qnext, as a function 
of its current state, Q, and input signals. The D flip-flop characteristic table has only one 1-minterm, which results in 
the simple characteristic equation for the D flip-flop shown in Figure 6.15(b). 
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6.10.3 State Diagram 

A state diagram is a graph with nodes and directed edges connecting the nodes, as shown in Figure 6.15(c). 
The state diagram graphically portrays the operation of the flip-flop. The nodes are labeled with the states of the 
flip-flop, and the directed edges are labeled with the input signals that cause the transition to go from one state of the 
flip-flop to the next. Figure 6.15(c) shows the state diagram for the D flip-flop. It has two states, Q = 0 and Q = 1, 
which correspond to the two values that the flip-flop can contain. The operation of the D flip-flop is such that when 
it is in state 0, it will change to state 1 if the input D is a 1; otherwise, if the input D is a 0, then it will remain in state 
0. Hence, there is an edge labeled D = 1 that goes from state Q = 0 to Q = 1, and a second edge labeled D = 0 that 
goes from state Q = 0 back to itself. Similarly, when the flip-flop is in state 1, it will change to state 0 if the input D 
is a 0; otherwise, it will remain in state 1. These two conditions correspond to the remaining two edges that go out 
from state Q = 1 in the state diagram. 

6.10.4 Excitation Table 

The excitation table is like the mirror image of the characteristic table by exchanging the input signal 
column(s) with the output (Qnext) column. The excitation table shows what the flip-flop’s inputs should be in order to 
change from the flip-flop’s current state to the next state desired. In other words, the excitation table answers the 
question of what the flip-flop’s inputs should be when given the current state that the flip-flop is in and the next state 
that we want the flip-flop to go to. This table is used in the synthesis of sequential circuits. 

Figure 6.15(d) shows the excitation table for the D flip-flop. As can be seen, this table can be obtained directly 
from the state diagram. For example, using the state diagram of the D flip-flop from Figure 6.15(c), if the current 
state is Q = 0 and we want the next state to be Qnext = 0, then the D input must be a 0 as shown by the label on the 
edge that goes from state 0 back to itself. On the other hand, if the current state is Q = 0 and we want the next state 
to be Qnext = 1, then the D input must be a 1. 
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Figure 6.15 Description of a D flip-flop: (a) characteristic table; (b) characteristic equation; (c) state diagram; (d) 
excitation table. 

6.11 * Timing Issues 

So far in our discussion of latches and flip-flops, we have ignored timing issues and the effects of propagation 
delays. In practice, timing issues are very important in the correct design of sequential circuits. Consider again the D 
latch with enable circuit from Section 6.5 and redrawn in Figure 6.16(a). Signals from the inputs require some delay 
to propagate through the gates and finally to reach the outputs. 

Assuming that the propagation delay for the inverter is 1 nanosecond (ns) and 2 ns for the NAND gates, the 
timing trace diagram would look like Figure 6.16(b) with the signal delays taken into consideration. The arrows 
denote which signal edge causes another signal edge. The number next to an arrow denotes the number of 
nanoseconds in delay for the resulting signal to change. 
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At time t1, signal D drops to 0. This causes R to rise to 1 after a 1 ns delay through the inverter. The D edge also 
causes S' to rise to 1, but after a delay of 2 ns through the NAND gate. After that, R' drops to 0 at 2 ns after R rises to 
1. This in turn causes Q' to rise to 1 after 2 ns, followed by Q dropping to 0. 

At time t2, signal E drops to 0, disabling the circuit. As a result, when D rises to 1 at time t3, both Q and Q' are 
not affected. 

At time t4, signal E rises to 1 and re-enables the circuit. This causes S' to drop to 0 after 2 ns. R' remains 
unchanged at 1 since the two inputs to the NAND gate, E and R, are 1 and 0, respectively. With S' asserted and R' de-
asserted, the latch is set with Q rising to 1 at 2 ns after S' drops to a 0. This is followed by Q' dropping to 0 after 
another 2 ns. 
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Figure 6.16 D latch with enable: (a) circuit; (b) timing diagram with delays. 

Furthermore, for the D-latch circuit to latch in the data from input D correctly, there is a critical window of time 
right before and right after the falling edge of the enable signal, E, that must be observed. Within this time frame, the 
input signal, D, must not change. As shown in Figure 6.17, the time before the falling edge of E is referred to as the 
setup time, tsetup, and the time after the falling edge of E is referred to as the hold time, thold. The length of these two 
times is dependent on the implementation and manufacturing process and can be obtained from the component data 
sheet. 

E

D

tsetup thold  
Figure 6.17 Setup and hold times for the gated D latch. 

6.12 Car Security System—Version 2 

In Section 2.9, we designed a combinational circuit for a car security system where the siren will come on when 
the master switch is on and either the door switch or the vibration switch is also on. However, as soon as both the 
door switch and the vibration switch are off, the siren will turn off immediately, even though the master switch is 
still on. In reality, what we really want is to have the siren remain on, even after both the door and vibration switches 
are off. In order to do so, we need to remember the state of the siren. In other words, for the siren to remain on, it 
should be dependent not only on whether the door or the vibration switch is on, but also on the fact that the siren is 
currently on. 

We can use the state of a SR latch to remember the state of the siren (i.e., the output of the latch will drive the 
siren). The state of the latch is driven by the conditions of the input switches. The modified circuit, as shown in 
Figure 6.18, has an SR latch (in addition to its original combinational circuit) for remembering the current state of 
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the siren. The latch is set from the output of the combinational circuit. The latch’s reset is connected to the master 
switch so that the siren can be turned off immediately. 

A sample timing trace of the operation of this circuit is shown in Figure 6.19. At time 0, the siren is off, even 
though the door switch is on, because the master switch is off. At time 300 ns, the siren is turned on by the door 
switch since the master switch is also on. At time 500 ns, both the door and the vibration switches are off, but the 
siren is still on because it was turned on previously. The siren is turned off by the master switch at time 600 ns. 

Q
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R'

Siren
SD

M
V

 
Figure 6.18 Modified car security system circuit with memory. 

 
Figure 6.19 Sample timing trace of the modified car security system circuit with memory. 

6.13 VHDL for Latches and Flip-Flops 

6.13.1 Implied Memory Element 

VHDL does not have any explicit object for defining a memory element. Instead, the semantics of the language 
provide for signals to be interpreted as a memory element. In other words, the memory element is declared 
depending on how these signals are assigned. 

Consider the VHDL code in Figure 6.20. If Enable is 1, then Q gets the value of D; otherwise, Q gets a 0. In this 
code, Q is assigned a value for all possible outcomes of the test in the IF statement. With this construct, a 
combinational circuit is produced. 

LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 
 
ENTITY no_memory_element IS PORT ( 
 D, Enable: IN STD_LOGIC; 
 Q: OUT STD_LOGIC); 
END no_memory_element; 

ARCHITECTURE Behavior OF no_memory_element IS 
BEGIN 
 PROCESS(D, Enable) 
 BEGIN 
  IF (Enable = '1') THEN 
   Q <= D;    
  ELSE 
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   Q <= '0'; 
  END IF; 
 END PROCESS; 
END Behavior; 

Figure 6.20 Sample VHDL description of a combinational circuit. 

If we remove the ELSE and the statement in the ELSE part, as shown in Figure 6.21, then we have a situation 
where no value is assigned to Q if Enable is not 1. The key point here is that the VHDL semantics stipulate that, in 
cases where the code does not specify a value of a signal, the signal should retain its current value. In other words, 
the signal must remember its current value, and in order to do so, a memory element is implied. 

6.13.2 VHDL Code for a D Latch with Enable 

Figure 6.21 shows the VHDL code for a D latch with enable. If Enable is 1, then Q gets the value of D. 
However, if Enable is not 1, the code does not specify what Q should be; therefore, Q retains its current value by 
using a memory element. This code produces a latch and not a flip-flop, because Q follows D as long as Enable is 1 
and not only at the active edge of the Enable signal. The process sensitivity list includes both D and Enable, because 
either one of these signals can cause a change in the value of the Q output. 

LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 

ENTITY D_latch_with_enable IS PORT ( 
 D, Enable: IN STD_LOGIC; 
 Q: OUT STD_LOGIC); 
END D_latch_with_enable; 

ARCHITECTURE Behavior OF D_latch_with_enable IS 
BEGIN 
 PROCESS(D, Enable) 
 BEGIN 
  IF (Enable = '1') THEN 
   Q <= D; 
  END IF; 
 END PROCESS; 
END Behavior; 

Figure 6.21 VHDL code for a D latch with enable. 

6.13.3 VHDL Code for a D Flip-Flop 

Figure 6.22 shows the behavioral VHDL code for a positive edge-triggered D flip-flop. The only difference here 
is that Q follows D only at the rising edge of the clock, and it is specified here by the condition “Clock'EVENT AND 
Clock = '1'.”  The 'EVENT attribute refers to any changes in the qualifying Clock signal. Therefore, when this happens 
and the resulting Clock value is a 1, we have, in effect, a condition for a positive or rising clock edge. Again, the 
code does not specify what is assigned to Q when the condition in the IF statement is false, so it implies the use of a 
memory element. Note also that the process sensitivity list contains only the clock signal, because it is the only 
signal that can cause a change in the Q output. 

LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 

ENTITY D_flipflop IS PORT ( 
 D, Clock: IN STD_LOGIC; 
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 Q: OUT STD_LOGIC); 
END D_flipflop; 

ARCHITECTURE Behavior OF D_flipflop IS 
BEGIN 
 PROCESS(Clock)       -- sensitivity list is used 
 BEGIN 
  IF (Clock'EVENT AND Clock = '1') THEN 
   Q <= D; 
  END IF; 
 END PROCESS; 
END Behavior; 

Figure 6.22 Behavioral VHDL code for a positive edge-triggered D flip-flop using an IF statement. 

Another way to describe a flip-flop is to use the WAIT statement instead of the IF statement, as shown in Figure 
6.23. When execution reaches the WAIT statement, it stops until the condition in the statement is true before 
proceeding. The WAIT statement, when used in a process block for synthesis, must be the first statement in the 
process. Note also that the process sensitivity list is omitted, because the WAIT statement implies that the sensitivity 
list contains only the clock signal. 

LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 

ENTITY D_flipflop IS PORT ( 
 D, Clock: IN STD_LOGIC; 
 Q: OUT STD_LOGIC); 
END D_flipflop; 

ARCHITECTURE Behavioral OF D_flipflop IS 
BEGIN 
 PROCESS          -- sensitivity list is not used if WAIT is used 
 BEGIN 
  WAIT UNTIL Clock'EVENT AND Clock = '0'; -- negative edge triggered 
  Q <= D; 
 END PROCESS; 
END Behavioral; 

Figure 6.23 Behavioral VHDL code for a negative edge-triggered D flip-flop using a WAIT statement. 

Alternatively, we can write a structural VHDL description for the positive edge-triggered D flip-flop, as shown 
in Figure 6.24. This VHDL code is based on the circuit for a positive edge-triggered D flip-flop, as given in Figure 
6.12. 

The simulation trace for the positive edge-triggered D flip-flop is shown in Figure 6.25.  In the trace, before the 
first rising edge of the clock at time 100 ns, both Q and Q' (QN) are undefined because nothing has been stored in 
the flip-flop yet. Immediately after this rising clock edge at 100 ns, Q gets the value of D, and QN gets the inverse. 
At 200 ns, D changes to 1, but Q does not follow D immediately but is delayed until the next rising clock edge at 
300 ns. At the same time, QN drops to 0. At 400 ns, when D drops to 0, Q again follows it at the next rising clock 
edge at 500 ns. 

-- define the operation of the 2-input NAND gate 
LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 

ENTITY NAND_2 IS PORT ( 
 I0, I1: IN STD_LOGIC; 
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 O: OUT STD_LOGIC); 
END NAND_2; 
 
ARCHITECTURE Dataflow_NAND2 OF NAND_2 IS 
BEGIN 
 O <= I0 NAND I1; 
END Dataflow_NAND2; 

-- define the structural operation of the SR latch 
LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 

ENTITY SRlatch IS PORT ( 
 SN, RN: IN STD_LOGIC; 
 Q, QN: BUFFER STD_LOGIC); 
END SRlatch; 

ARCHITECTURE Structural_SRlatch OF SRlatch IS 
 COMPONENT NAND_2 PORT ( 
  I0, I1 : IN STD_LOGIC; 
  O : OUT STD_LOGIC); 
 END COMPONENT; 
BEGIN 
 U1: NAND_2 PORT MAP (SN, QN, Q); 
 U2: NAND_2 PORT MAP (Q, RN, QN); 
END Structural_SRlatch; 

-- define the operation of the 3-input NAND gate 
LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 

ENTITY NAND_3 IS PORT ( 
 I0, I1, I2: IN STD_LOGIC; 
 O: OUT STD_LOGIC); 
END NAND_3; 
 
ARCHITECTURE Dataflow_NAND3 OF NAND_3 IS 
BEGIN 
 O <= NOT (I0 AND I1 AND I2); 
END Dataflow_NAND3; 
 
-- define the structural operation of the D flip-flop 
LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 

ENTITY positive_edge_triggered_D_flipflop IS PORT ( 
 D, Clock: IN STD_LOGIC; 
 Q, QN: BUFFER STD_LOGIC); 
END positive_edge_triggered_D_flipflop; 

ARCHITECTURE StructuralDFF OF positive_edge_triggered_D_flipflop IS 
 SIGNAL N1, N2, N3, N4: STD_LOGIC; 
 
 COMPONENT SRlatch PORT ( 
  SN, RN: IN STD_LOGIC; 
  Q, QN: BUFFER STD_LOGIC); 
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 END COMPONENT; 
 COMPONENT NAND_2 PORT ( 
  I0, I1: IN STD_LOGIC; 
  O: OUT STD_LOGIC); 
 END COMPONENT; 
 COMPONENT NAND_3 PORT ( 
  I0, I1, I2: IN STD_LOGIC; 
  O: OUT STD_LOGIC); 
 END COMPONENT; 
 
BEGIN 
 U1: SRlatch PORT MAP (N4, Clock, N1, N2);  -- set latch 
 U2: SRlatch PORT MAP (N2, N3, Q, QN);  -- output latch 
 U3: NAND_3 PORT MAP (N2, Clock, N4, N3); -- reset latch 
 U4: NAND_2 PORT MAP (N3, D, N4);   -- reset latch 
END StructuralDFF; 

Figure 6.24 Structural VHDL code for a positive edge-triggered D flip-flop.  

 

Figure 6.25 Simulation trace for the positive edge-triggered D flip-flop. 

6.13.4 VHDL Code for a D Flip-Flop with Enable and Asynchronous Set and Clear 

Figure 6.26 shows the VHDL code for a positive edge-triggered D flip-flop with enable and asynchronous 
active-high set and clear inputs. The two asynchronous inputs are checked independently of the clock event. When 
either the Set or the Clear input is asserted with a 1 (active-high), Q is immediately set to 1 or 0, respectively, 
independent of the clock. If Enable is asserted with a 1, then Q follows D at the rising edge of the clock; otherwise, 
Q keeps its previous content. Figure 6.27 shows the simulation trace for this flip-flop. Notice in the trace that when 
either Set or Clear is asserted (at 100 ns and 200 ns, respectively) Q changes immediately. However, when Enable is 
asserted at 400 ns, Q doesn’t follow D until the next rising clock edge at 500 ns. Similarly, when D drops to 0 at 600 
ns, Q doesn’t change immediately but drops at the next rising edge at 700 ns. At 800 ns, when D changes to a 1, Q 
does not follow the change at the next rising edge at 900 ns, because Enable is now de-asserted. 

LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 
 
ENTITY d_ff IS PORT ( 
 Clock: IN STD_LOGIC; 
 Enable: IN STD_LOGIC; 
 Set: IN STD_LOGIC; 
 Clear: IN STD_LOGIC; 
 D: IN STD_LOGIC; 
 Q: OUT STD_LOGIC); 
END d_ff; 
 
ARCHITECTURE Behavioral OF d_ff IS 
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BEGIN 
 PROCESS(Clock,Set,Clear) 
 BEGIN 
  IF (Set = '1') THEN 
   Q <= '1'; 
  ELSIF (Clear = '1') THEN 
   Q <= '0'; 
  ELSIF (Clock'EVENT AND Clock = '1') THEN 
   IF Enable = '1' THEN 
    Q <= D; 
   END IF; 
  END IF; 
 END PROCESS; 
END Behavioral; 

Figure 6.26 Behavioral VHDL code for a positive edge-triggered D flip-flop with active-high enable and 
asynchronous set and clear inputs.  

 
Figure 6.27 Simulation trace for the positive edge-triggered D flip-flop with active-high enable and asynchronous 
set and clear inputs. 

6.14 * Other Flip-Flop Types 

There are basically four main types of flip-flops: D, SR, JK, and T. The major differences in these flip-flop 
types are in the number of inputs they have and how they change states. Like the D flip-flop, each type can also have 
different variations, such as active-high or -low inputs, whether they change state at the rising or falling edge of the 
clock signal, and whether they have any asynchronous inputs. Any given sequential circuit can be built using any of 
these types of flip-flops or combinations of them. However, selecting one type of flip-flop over another type to use 
in a particular circuit can affect the overall size of the circuit. Today, sequential circuits are designed primarily with 
D flip-flops only because of their simple operation. Of the four flip-flop’s characteristic equations, the characteristic 
equation for the D flip-flop is the simplest. 

6.14.1 SR Flip-Flop 

Like SR latches, SR flip-flops are useful in control applications where we want to be able to set or reset the data 
bit. However, unlike SR latches, SR flip-flops change their content only at the active edge of the clock signal. 
Similar to SR latches, SR flip-flops can enter an undefined state when both inputs are asserted simultaneously. 
When the two inputs are de-asserted, then the next state is the same as the current state. The characteristic table, 
characteristic equation, state diagram, circuit, logic symbol, and excitation table for the SR flip-flop are shown in 
Figure 6.28. 

The SR flip-flop truth table shown in Figure 6.28(a) is for active-high set and reset signals. Hence, the flip-flop 
state, Qnext, is set to 1 when S is asserted with a 1, and Qnext is reset to 0 when R is asserted with a 1. When both S 
and R are de-asserted with a 0, the flip-flop remembers its current state. From the truth table, we get the following 
K-map for Qnext, which results in the characteristic equation shown in Figure 6.28(b). 
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SR
Q

0

00
1

1 1

01 11 10

1

Qnext

×

×

S

R'Q  

Notice that the SR flip-flop circuit shown in Figure 6.28(d) uses the D flip-flop. The signal for asserting the D 
input of the flip-flop is generated by the combinational circuit that is derived from the characteristic equation of the 
SR flip-flop, namely D = Qnext = S + R'Q. 
 

S R Q Qnext Qnext' 
0 0 0 0 1 
0 0 1 1 0 
0 1 0 0 1 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 1 0 
1 1 0 × × 
1 1 1 × × 

(a) 

Qnext = S + R'Q 

 
 

(b) 

Q = 0 Q = 1

SR = 10

SR = 00 or 10

SR = 00 or 01

SR = 01
 

(c) 

Clk

D

Q'

Q

Clk

R
S Q

Q'
 

(d) 

Clk

S

Q'

Q

R
 

(e) 

 
Q Qnext S R 
0 0 0 × 
0 1 1 0 
1 0 0 1 
1 1 × 0 

(f) 

Figure 6.28 SR flip-flop: (a) characteristic table; (b) characteristic equation; (c) state diagram; (d) circuit; (e) logic 
symbol; (f) excitation table. 

6.14.2 JK Flip-Flop 

The operation of the JK flip-flop is very similar to the SR flip-flop. The J input is just like the S input in the SR 
flip-flop in that, when asserted, it sets the flip-flop. Similarly, the K input is like the R input where it resets the flip-
flop when asserted. The only difference is when both inputs, J and K, are asserted. For the SR flip-flop, the next 
state is undefined; whereas, for the JK flip-flop, the next state is the inverse of the current state. In other words, the 
JK flip-flop toggles its state when both inputs are asserted. The characteristic table, characteristic equation, state 
diagram, circuit, logic symbol, and excitation table for the JK flip-flop are shown in Figure 6.29. 
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6.14.3 T Flip-Flop 

The T flip-flop has one input, T (which stands for toggle), in addition to the clock. When T is asserted (T = 1), 
the flip-flop state toggles back and forth at each active edge of the clock, and when T is de-asserted, the flip-flop 
keeps its current state. The characteristic table, characteristic equation, state diagram, circuit, logic symbol, and 
excitation table for the T flip-flop are shown in Figure 6.30. 
 

J K Q Qnext Qnext' 
0 0 0 0 1 
0 0 1 1 0 
0 1 0 0 1 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 1 0 
1 1 0 1 0 
1 1 1 0 1 

(a) 

Qnext = K'Q + JQ' 

 
 

(b) 
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Clk
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QJ
K

Clk

Q

Q'

 

(d) 

Clk

J

Q'

Q

K
 

(e) 

 
Q Qnext J K 
0 0 0 × 
0 1 1 × 
1 0 × 1 
1 1 × 0 

(f) 

Figure 6.29 JK flip-flop: (a) characteristic table; (b) characteristic equation; (c) state diagram; (d) circuit; (e) logic 
symbol; (f) excitation table. 
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T Q Qnext Qnext' 
0 0 0 1 
0 1 1 0 
1 0 1 0 
1 1 0 1 

(a) 

Qnext = TQ' + T'Q = T ⊕ Q 
 

(b) 

Q = 0 Q = 1

T = 1

T = 0

T = 0

T = 1
 

(c) 

Clk

D

Q'

Q

Clk
T

Q'

Q

 
 

(d) 

Clk

T
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Q Qnext T 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

(f) 

Figure 6.30 T flip-flop: (a) characteristic table; (b) characteristic equation; (c) state diagram; (d) circuit; (e) logic 
symbol; (f) excitation table. 

6.15 Summary Checklist 
 

 Feedback loop 
 Bistable element 
 Latch 
 Flip-flop 
 Clock 

 Level-sensitive, active edge, rising/falling edge, clock cycle 
 SR latch 
 SR latch with enable 
 D latch 
 D latch with enable 
 D flip-flop 

 Characteristic table, characteristic equation, state diagram circuit, excitation table 
 Asynchronus inputs 
 VHDL implied memory element 
 SR flip-flop 

 Characteristic table, characteristic equation, state diagram circuit, excitation table 
 JK flip-flop 

 Characteristic table, characteristic equation, state diagram circuit, excitation table 
 T flip-flop 

 Characteristic table, characteristic equation, state diagram circuit, excitation table 

6.16 Problems 

1. Draw an SR latch with enable similar to that shown in Figure 6.4, but using NOR gates to implement the SR 
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latch. Derive the truth table for this circuit. 
 

2. Draw the D latch using NOR gates 

3. Draw the D latch with enable similar to the circuit in Figure 6.6(a), but use NAND gates instead of the 
multiplexer. 

4. Draw the master-slave negative edge-triggered D flip-flop circuit. 

5. Derive the truth table for a negative edge-triggered D flip-flop. 

6. Draw the circuit for an SR flip-flop using SR latches. 

7. 6.7 Draw the circuit for the JK flip-flop using SR latches. 

8. 6.8 Draw the circuit for the T flip-flop using a JK flip-flop. 

9. 6.9 Complete the following timing diagram for the following circuit. Assume that the signal delay through the 
NOR gates is 3 nanoseconds, and the delay through the NOT gate is 1 nanosecond. 

Q

Q'D

D'

 

D

D'

Q

0 1 2 3 4 5 6Time (ns) 7 8

Q'
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