Appendix D — Verilog Summary Page 1 of 16

Contents

Appendix D T] oo IR U112 Y 2
D.1 BasiC LaNQUAQE EIBMENEScveiiiiiiie ettt e e e te s te st e e reeneene e e eneeneennenre e 2
D.1.1 L)Y (o S 2
D.1.2 (O00] 0011 11T 1 T T TSP PP ORPPOPTPPPRPRON 2
D.1.3 FABNEITIEES ...ttt bbb bbbt bbbt bbbt n ettt b et ne e nes 2
D.14 NUMDEIS ANG SEINGS ..ottt sttt bbbt h et b et bt sb e s bt ebe e s e et e besbenbesbesneneas 3
D.15 DEFINING CONSTANTS ...ttt ettt b e bbb bt et e e et e b e ebesbeebe et e e st eneesb e besbeebenes 3
D.1.6 DU B 1Y 01 T TP U PP R TP 3
D.1.7 DU W O] 0T =1 (o] £ T TP TR T PP PP 4
D.1.8 oo [0 -SSR 5
D.1.9 Y oo (U1 [T o T 1] (=T SRR 6
D.2 BehaVioral IMOUEL..........coiiiieie et bbbttt sttt 7
DI R 111 ST 7
D.2.2 EVENE CONLIOL ...eiiiiiiiictie ettt bbb bbbt bbbttt sttt nes 7

D I Nt T o 111) OSSN 8
DT o =T [=T oo RS 8
D.25 ITENEN-EISE .t bbbt 9
D.2.6 CASE, CASEX, CASEBZ v.uvveeureeestreaseeasteeaseesteeassesstesassesastsaassesasteeanteeassseasteeasseeanteeasbeeanbeeanbeeanbeeenbeestaeanbeeans 9
D.2.7 (0] G PSSRSO 10
2 T .Y o1 -SSR 10
D.2.9 0] 103 1T o PP USSR 11
D.2.10 Behavioral MOdel SAMPIEcooiiiiiieie et bbbttt besb e 11
D.3 Dataflow IMOUE ..o bbb bbbt ettt 12
20 T8 A @ 1[40 To U S AN T3 1 11 o S 12
D.3.2 Conditional ASSIGNMENT........cciiiiiiieeieiere s se e e et re e et esae s e e aesreeteeseeneeseeseeneeseesrenreans 12
D.3.3 Dataflow MOodel SAMPIE......cceiiiicice e e enes 13
D.4 SHUCLUIEL IMOTEI ...ttt bbbttt b et be e re st 13
D.4.1 Structural Model SAMPIE.......ccv i e nre e 14
a0 1= S USSR 15

Digital Logic and Microprocessor Design with Verilog Last updated 3/8/2006 1:11:00 PM

Appendix D — Verilog Summary Page 2 of 16

Appendix D Verilog Summary

The Verilog language is a hardware description language (HDL) for modeling digital circuits that can range
from the simple connection of gates to complex systems. Verilog was originally designed as a proprietary
verification and simulation tool. Later, logic and behavioral synthesis tools were also added. The language was first
standardized in 1995 by IEEE, followed by a second revision in 2001. This appendix gives a brief summary of the
basic Verilog elements and its syntax. Many advanced features of the language are omitted. Interested readers
should refer to other references for detailed coverage.

D.1 Basic Language Elements

D.1.1 Keywords

The Verilog language is case sensitive, and all of the keywords are in lower case. Figure D.1 showiﬁ@@
of the Verilog keywords.

always and assign automatic begin Bub-, J
bufif0 bufifl case casex casez /f défadlit
defparam else end endcase endfunction Z-endgenerate
endmodule endtask event for forever /* Afunction
generate genvar if include inout, » input
integer library module nand negedge- /| nor

not notif0 notifl or output \ parameter
posedge reg signed supply0 supplyl task

tri tri0 tril unsigned \dﬁd\ while
wire wor xnor xor

Figure D.1 Partial list of Verilog keywords. U

\
D.1.2 Comments {(\\\\)

Single line comments are preceded by two consecutive sla /aF§ V7%%»;«f/are terminated at the end of the line.

Example: ”\ }

/1 This is a single |ine comment DN

Multiple line comments begin with the two ch;xraQ(W*\an ends with the two characters */.

Example: /(\ \/
/* This is a) (
multiple line comrent \/
*/ «/\
//>
D.1.3 Identifiers /V\\S
L (N .
Verilog identifiers are user gl\'“% Verilog identifiers must use the following syntax:

« Asequence of Qne q‘(\O\e} u@é?rcase letters, lowercase letters, digits, and the underscore (_)

e Upperand on'{cértése latters are treated differently (i.e., case sensitive)

e The first chart &)ﬁjﬁt be a letter or the underscore
» The length of theidentifier must be 1024 characters or less

Digital Logic and Microprocessor Design with Verilog Last updated 3/8/2006 1:11:00 PM

Appendix D — Verilog Summary Page 3 of 16

D.1.4 Numbers and Strings

Numbers

Number constants can be specified in any one of the four bases: decimal, hexadecimal, octal, or binary. An
unsized decimal number can also be specified using just the digits from 0 to 9.

Syntax:
a'sfn
where:
a is the number of bits (specified as an unsigned decimal number) of the constant.
s optionally specifies that the value is to be considered as a signed number.

f specifies the base of the number. It is replaced by one of the letters: d (decimal), h (hexadecimal), o
(octal), and b (binary). PN

n is the value of the constant specified in the given base.

Example:

48 /'l an unsi zed deci mal nunber 48
4'b 1001 // a 4-bit binary nunber 1001

8'd 28 // an 8-bit deci mal nunber 28

'o 537 // an unsized octal nunber 537
12'h 7e9 // a 12-bit hexadeci mal nunber 7e9

Strings
String constants are enclosed within double quotes.

Example:

reg [1:8] MyString;
MyString ="This is a string";

D.1.5 Defining Constants f /
\

Identifiers can be defined with a constant value. Once Yt\l\x\”l;ﬁr‘ , the identifier can then be used in placed of
the constant. The compiler directive starting with the single opening uote (), followed by the word define is used
to define the identifier. When using the identifier, the sm@eopemng quote must always precede the identifier name.

Syntax—definition: \(\

“define identifier constant i) \
(\
Syntax—usage: >/\
“identifier ”\
Z N\/

Example:
xamp /”A

“define buswidith "dg (.) /1 define buswidth to be constant 8
Wi re [buswi dth-1: 0] e:—it\ab S; /1 using buswi dth

D.1.6 Data Types <i\;f 4
kinds of data types.

Digital Logic and Microprocessor Design with Verilog Last updated 3/8/2006 1:11:00 PM

Nets and registers are't

Appendix D — Verilog Summary Page 4 of 16

« Nets, defined with the wire keyword", are used to model electrical connections between components. It is
used to connect instances together to transmit logic values between them. Nets do not store values and have
to be continuously driven. An optional range [start:end] can be given for the bit width.

» Registers, defined with the reg keyword, are used to represent storage elements. Registers can store their
values from one assignment to the next. An optional range [start:end] can be given for the bit width.
Furthermore, the optional signed keyword can be used to denote that the data in the register is to be treated
as a signed (2’s complement) number.

Syntax:
wire [range] identifierl, identifier2, ...;

reg [signed] [range] identifierl, identifier2, ...;

Example:

wire x, vy; /] two 1-bit wire

wire [1:4] bus; // a 4-bit wire with bit 1 being the npost significant

reg z; /1 a 1-bit register

reg [7:0] s; /1 an 8-bit register with bit 7 being the nost significant

D.1.7 Data Operators

Some of the more commonly used Verilog operators are listed in Figure D.2.

Logical Operators Operation Example

&& Logical AND if (a>b) && (c <d))

I| Logical orR If (@>b) || (c<d))

! Logical NOT If I(a>b)

& Bitwise AND of individual bits n=a&b

| Bitwise OR of individual bits n=alb

~ Bitwise NOT of individual bits n=-a

N Bitwise X0R of individual bits n=a”"b

Avrithmetic Operators Operation Example

+ Addition n=a+b

- Subtraction n=a->b

* Multiplication (integer or floating point) n=a*b

/ Division (integer or floating point) n=alb

% Modulus; remainder (integer) n=a%bhb

** Power n=a**2

Relational Operators Operation Example

== Logical equal if @==h)

1= Logical not equal if (a!=Dh)

< Less than if (@<bh)

<= Less than or equal if (@<=h)

> Greater than if (@>h)

>= Greater than or equal if (@>=h)

=== Bitwise equal. All bits must match. May | if (a ===1h)
include x and z values.

== Bitwise not equal. True if only one bit is | if (a !==b)
different. May include x and z values.

! In addition to the wire net type, there are several other net data types defined in Verilog.

Digital Logic and Microprocessor Design with Verilog

Last updated 3/8/2006 1:11:00 PM

Appendix D — Verilog Summary Page 5 of 16

Shift and Other Operators Operation Example

<< Logical left shift. Pad with zero n=7'h1001010 << 2
>> Logical right shift. Pad with zero n=a>>1

<<< Arithmetic left shift. Pad with zero n=a<<<3

>>> Arithmetic right shift. Pad with sign bit n=a>>>?2

{,} String concatenation n={{3{a}}, b, c}

Figure D.2 Verilog built-in data operators.

D.1.8 Module

In Verilog, a module represents a logical component in a digital system. Each module has an interface for
specifying the signals for communication with other modules. These port signals are declared within parenthesis,
and can be of types input, output, or inout (for bidirectional communication). A module’s body contains statements
which describe the actual operation of the logical component.

The operational description of the module can be written using one of three different models: behavioral,
dataflow, or structural. Behavioral modeling is concerned with describing the abstract operation of the circuit using
a high-level construct, and do not take into consideration of how the circuit is actually implemented. Dataflow
modeling specifies the circuit in a form that is closely related to a Boolean equation. Structural modeling describes
a circuit in terms of how the primitive gates are interconnected together.

Syntax:
module module_name
(input port_name_list,
output port_name_list,
inout port_name_list);

statements;
endmodule

Example: Behavioral model

/1 a 1-bit 2-to-1 nultiplexer witten in behavioral nodel
nodul e nul ti pl exer

(i nput do, di, s, /1 interface

output reg vy);

al wvays @s, dO, dl) begin
if (~s)
y = do; /1 assign dO to y
el se
y = di;
end

endnodul e

Example: Dataflow model

/1 a 1-bit 2-to-1 nultiplexer witten in datafl ow nodel
nmodul e nul ti pl exer

(i nput do, di, s, /1 interface

out put vy);

Digital Logic and Microprocessor Design with Verilog Last updated 3/8/2006 1:11:00 PM

Appendix D — Verilog Summary Page 6 of 16

assigny = (~s &d0) | (s & dl);

endnodul e

Example: Structural model

// a 1-bit 2-to-1 nultiplexer witten in structural nodel
nmodul e nul ti pl exer

(i nput do, di, s, /'l interface

output reg vy);

wire sn, snd0O, sdl; // define 3 nets for connecting the conmponents

not Ul(sn,s); /1 an instance of the NOT gate. sn is the output
and U2(snd0, dO,sn); // an instance of the AND gate. sndO is the output
and U3(sdl,dl,s);

or UWUA(y, sndO, sdl);

endnodul e

D.1.9 Module Parameter

A module may have an optional parameter list. This list of parameters, with optional default values, allows us
to define generic information about the module. The parameter keyword is used to specify a list of identifiers with
optional default values assigned to them. The identifier is assigned an external value when the module is
instantiated, or is assigned the default value when no external value is given. The identifier can then be used in
placed of the constant.

Syntax—Declaration:
module module_name
#(parameter identifier = default_value, identifier = default_value)
(input port_name_list,
output port_name_list,
inout port_name_list);

statements;
endmodule

Syntax—Instantiation:
module_name #(constant) instance_name (parameter_list);

Example—Declaration:

/1 a default 8-bit 2-to-1 nultiplexer witten in datafl ow nodel
nmodul e nul ti pl exer
#(paraneter width = 8) // a paraneter constant with a default value of 8

(i nput [width-1:0] doO, di,
i nput s,
output [width-1:0] y);

assigny = (~s) ? d0:dl; // assigns dOtoy if s is O,
/1l otherwi se assigns dl to y

endnodul e

Digital Logic and Microprocessor Design with Verilog Last updated 3/8/2006 1:11:00 PM

Appendix D — Verilog Summary Page 7 of 16

Example—Instantiation:

/1 instantiating a 4-bit 2-to-1 nultiplexer
mul ti pl exer #(4) Ul(inputl, input2, select, output);

D.2 Behavioral Model

The behavioral model allows statements to be executed sequentially very much like in a regular computer
program. An always block, containing one or more sequential statements, forms the basis of the behavioral model.
The always block is like a process with its independent thread of control, and continuously repeats executing the
statements that are inside it. All sequential statements, including many of the standard constructs, such as variable
assignments, if-then-else, and loops, must be written inside an always block.

D.2.1 always F){h)
t itself is a

The always block contains statements that are executed sequentially. However, the aIV\
concurrent statement. The always block continuously repeats executing the statement aJ/are inside it. A
behavioral module may contain multiple always blocks, and they all will be executed cor@@.&y.

Syntax: %§
always /Q\VQ

N

statement; /\A\/
N

Example: /
e
Siren: PROCESS (D, V, M :
BEG N ”\\
term1l <= D ORV, (s,)
S <=term1l AND M ﬁ
END PROCESS; >

An always construct is usually used in conjunction Ww{(eﬁayént control (@) to create either a combinational
or sequential logic. /\

D.2.2 Event Control \/

The event control statement, which uses t}"\“ svmbol waits for the specified event to occur. As soon as the
event occurs, the statement associated with it-is.e ted. The event is specified in the form of a sensitivity list,
which is a comma-separated list of nets: m a signal in the sensitivity list changes value, the associated
statement will be executed. /

Syntax: \ﬁ
o Je\/ J
@ (sensitivity_list) N

statement; ¢

If the sensitivity list co evel
combinational logic is crem,eu\'l'}

Syntax: P (@ /

@ (?tatg@

Example:

variable that are in the right-hand side or condition of the statement, then a
symbol can be used as a shorthand notation to denote all of the variables.

Digital Logic and Microprocessor Design with Verilog Last updated 3/8/2006 1:11:00 PM

Appendix D — Verilog Summary Page 8 of 16

/1 synthesizes to a conbinational |ogic
al ways @ *) /1 equivalent to always @a, b, c)
if (a==1)
X = b;
el se
X = c;

The nets specified in the sensitivity list may be qualified with the keywords posedge or negedge so that the
control statement watches only for the positive or negative transition, respectively, of the given signal before it
executes the statement. In this case, a sequential logic is created.

Syntax:

@ (posedge signal)
statement;

@ (negedge signal)
statement;

Example:

/1 a Dflipflip
nmodul e dFF

(output reg q,

i nput cl ock, data);

al ways @ posedge cl ock)
g <= data; // q gets the value of data at the next rising clock edge
endnodul e;

D.2.3 Assignment

Variable assignments are performed using the symbol = for blocking, or <= for non-blocking.

Syntax:
register_identifier = expression; I blocking (immediate) assignment
register_identifier <= expression; /I non-blocking (concurrent) assignment
Example:
q=q-1
zero = 1' bO;

D.2.4 begin-end

A block of sequential statements can be grouped together to form a single block with the use of the begin and
end keywords.

Syntax:
begin
statementl;
statement2;

end

Digital Logic and Microprocessor Design with Verilog Last updated 3/8/2006 1:11:00 PM

Appendix D — Verilog Summary

D.2.5 if-then-else

Syntax:

if (condition)
statement1;
else
statement2;

or

if (condition)
statementl;
else if (condition)
statement2;
else
statement3;

Example:

Page 9 of 16

if (count '= 10) // not equal
count = count + 1;

el se

count = O;

D.2.6 case, casex, casez

Syntax:

case (expression)
constantl: statementl;
constant2: statement2;

default: statement3;
endcase

The casex, and casez statements have the same syntax as the case statement, except for the replaced keyword.
The casez statement allows for z values to be treated as don’t-care values, while the casex statement allows for both

x and z values to be treated as don’t-cares.

Example:

nodul e nux4
#(paraneter width = 8)
(input [1:0] s,
i nput [width-1:0] d3, d2, di, doO,
output reg [width-1:0] vy);

al ways @s, dO, dl, d2, d3) begin

case (s)
2' b00: y = dO;
2'b01: y = di;
2'b10: y = d2
2'b1l: y = d3;
endcase

Digital Logic and Microprocessor Design with Verilog

Last updated 3/8/2006 1:11:00 PM

Appendix D — Verilog Summary Page 10 of 16

end
endnodul e

D.2.7 for

Syntax:

for (identifier = low_range; identifier < high_range; identifier = identifier + step)
statement;

Example:

nodul e Test FOR
(sum;

inout reg [7:0] sum = 'dO;
reg [3:0] i;

al ways
begi n
for (i =0; i <10; i =i + 1)
begin
sum = sum + i;
end
end

endnodul e

D.2.8 while

Syntax:

while (condition)
statement;

Example:

nodul e Test WHI LE
(sum;

inout reg [7:0] sum = 'dO;
reg [3:0] i;

al ways

begi

i = 0;

while (i < 10)
begi n
sum = sum + i;
i =i + 1
end

end

endnodul e

Digital Logic and Microprocessor Design with Verilog Last updated 3/8/2006 1:11:00 PM

Appendix D — Verilog Summary

D.2.9 function

Syntax—Function definition:

function function_name (parameter_list);

/I register declarations

/] wire declarations
begin
statement;
end
endfunction
Syntax—Function call:

function-name (parameters);

Example:

Page 11 of 16

nodul e Test Functi on
(input [7:0] bitstring,
output [7:0] result);

assign result
/1 function to performa shift
function [7:0] Shiftright
(input [7:0] string);

Shiftright
endf uncti on

endnodul e

= Shiftright(bitstring);

right

= {1' b0, string[7:1]};

/1 function call

D.2.10Behavioral Model Sample

NNNNNNNNNN NN N

''b1111110;
' b0110000;
'b1101101;
''b1111001;
' b0110011;
''b1011011;
'b1011111;
''b1110000;
'b1111111;
''b1110011;
''b1110111;
'b0011111;
' b1001110;

/1
I
I

/1
/1
11
11
/1
/1

11
/1

/1 BCD to 7-segment decoder witten in behaviora
nodul e decoder
(input [3:0] I,
output reg a,b,c,d, e, f,g);
al ways @*) begin
case(l)
4' b0000: {a,b,c,d,e, f,g} =
4' b0o001: {a,b,c,d,e, f,g} =
4' b0010: {a,b,c,d,e, f,g} =
4' b0011: {a,b,c,d,e,f,g} =
4' b0100: {a,b,c,d,e,f,g} =
4' b0101: {a,b,c,d,e, f,g} =
4' b0110: {a,b,c,d,e, f,g} =
4' b0111: {a,b,c,d,e, f,g} =
4' b1000: {a,b,c,d,e, f,g} =
4' b1001: {a,b,c,d,e,f,g} =
4' b1010: {a,b,c,d,e, f,g} =
4' b1011: {a,b,c,d,e, f,g} =
4' b1100: {a,b,c,d,e, f,g} =

OTI>POOO~NOUDMWNEFO

code

Digital Logic and Microprocessor Design with Verilog

Last updated 3/8/2006 1:11:00 PM

Appendix D — Verilog Summary Page 12 of 16

4'b1101: {a,b,c,d,e,f,g} = 7'b0111101; /1 d
4' b1110: {a,b,c,d,e,f,g} = 7' b1l001111; /'l E
4'b1111: {a,b,c,d,e,f,g} = 7' b1l000111; /Il F
default: {a,b,c,d, e, f,g} = 7' b000000O; /1 all off
endcase
end
endnodul e

D.3 Dataflow Model

The dataflow model specifies the circuit in a form similar to Boolean algebra. Hence, this model is best suited
for describing a circuit when given a set of Boolean equations.

D.3.1 Continuous Assignment (({1\
The assign statement is used to provide continuous assignment of values onto nets. The & 'qﬁ*s(r ent is
evaluated anytime when any of its inputs changes, and the result of the evaluation is propagated e %‘ﬁ

Syntax:
assign net_identifier = expression; I/ blocking (immediate) asmgnmem&j

assign net_identifier <= expression; /I non-blocking (concurreng\w n “'t

assign net_identifier = function; \

The expression on the right-hand side of the first two assign statements can béfelther a logical or arithmetic
expression. It is evaluated anytime when any of its inputs changes. Theﬁm\f/m@{ty/\ expression is assigned to the net
on the left-hand side of the statement. 2

For the blocking assignment (=) statement, the assignment takeé{{e;ﬁi?t immediately and the value written to
the register on the left-hand side of the = sign is available for use in the-nextstatement.

However, the non-blocking assignment (<=) statements are xeo\ ed concurrently. In other words, all of the
right-hand side expressions in these non-blocking assignment(statements will be evaluated before any of the left-
hand side registers are updated. Hence, the ordering of these Statements does not affect the resulting output, and all
of the assignments will be synchronized so that thm/ \\pma to happen at the same time. Usually, the non-
blocking assignment statements are used in always stavte\r}e\ﬁé> vith an edge specification (i.e., posedge or negedge).

The function on the right-hand side of the last.assign statement may contain procedural statements only if they
describe a combinational logic function. These pro%statements may be case and loop statements, but not wait,
or control event (@) statements. Wait and @ Cm@’f*\.a\te rents will produce a sequential logic function.

Example: \ /

wire [7:0] v; \y/
wire siren, nmster, dom’@ vuﬁ i on;

assigny = 8 b1111111”<\\ /] assigns 8 bits of 1's to vy
&

assign siren = naster (door | vibration);

D.3.2 Conditional Ass%nm)nt>

The conditional ‘sig né@nn«%t statement selects one of two different values to assign to a net. This
statement is execut Whene n input in any one of the expressions or condition changes.

Syntax: \)

assign net_identifier = (condition) ? expressionl:expression2;

Digital Logic and Microprocessor Design with Verilog Last updated 3/8/2006 1:11:00 PM

Appendix D — Verilog Summary Page 13 of 16

If the condition is true, then the result of expressionl is assigned to the net, otherwise the result of expression2
is assigned to the net.

Example:

assign out = (enable) ? in:1' bz; /1 assigns in to out if enable is true
/1l otherwi se assigns a z to out

D.3.3 Dataflow Model Sample

This example describes a full adder circuit using the dataflow model. Recall that the Boolean equations for
describing the full adder circuit are:
Cout =Xy+Cin(xOYy)
sum =x0OyOc

The following code for the full adder circuit translates the above two equations into the corresgw%\ WO
assign statements.

/1 Dataflow code for a full adder \
nodul e fa , €/ (O
(input x,y,cin, /Q
out put cout, sunj; R
assign cout = (x &y) | (cin & (x ™~ y)); LN

assign sum=x A~y A cin; O\A/
endnodul e \

D.4 Structural Model “\\f\\\/

The structural model allows the manual connection of primitive gatg@ %dule components together using
nets to build larger modules. =

N
Syntax: (Q

and instance_name (parameter_list); \ 7 /I implements the primitive logic function
nand instance_name (parameter_list); \

nor instance_name (parameter_list); \
or instance_name (parameter_list);
YL

Xor instance_name (parameter_list);

Xnor instance_name (parameter_list); N
buf instance_name (output, input);/ /I implements the non-inverting buffer
not instance_name (output, mput) / /I implements the inverter

bufif0 instance_name (output, input, qm Iehf // implements the tri-state buffer with active-low enable
bufifl instance_name (output, |ﬁp'|t ena @ /I implements the tri-state buffer with active-high enable
notif0 instance_name (output, in NJ); [/l implements the tri-state inverter with active-low enable
notifl instance_name (output, i »,(i\ ble); // implements the tri-state inverter with active-high enable
</

user_defined_module_ nam
/\
The syntax for using a gate ar. 1\53 defined module is the same. Each instance of a gate or module can have an
optional instance name. The d?a\mmgm\ list consists of comma separated input and output signals. All of the
input/output signals are fgts Qi typé Wn@? For the predefined primitive gates, the first parameter specified is always
the output signal, follcn ed by as-many input nets as needed. For the user defined module, it depends on how the port

list in the module definition is specified.

nstance_name (parameter_list); I 'a user defined module

@R

Example:

Digital Logic and Microprocessor Design with Verilog Last updated 3/8/2006 1:11:00 PM

Appendix D — Verilog Summary Page 14 of 16

and Ul(out, inl, in2, in3); // a 3-input AND gate
bufifl U2(out, in, enable); // a tri-state buffer with active-high enable
fa U3(cout, sum X, y, cin); [/ an instance of the full adder

D.4.1 Structural Model Sample

This example is based on the following circuit:

terml
—L D

=<0

nodul e siren
(input D, V, M
output S);

wire termil;
or Ul(terml, D, V);

and U2(S,ternl, M;
endnodul e

Digital Logic and Microprocessor Design with Verilog Last updated 3/8/2006 1:11:00 PM

Appendix D — Verilog Summary

Index

@

@. See Event control

{

{ }. See String concatenation

A

always, 7

and, 13

assign, 12
blocking, 12
conditional, 12
continuous, 12
non-blocking, 12

Assignment, 8

B

begin, 8

Behavioral model, 5, 7
example, 11

buf, 13

bufif0, 13

bufifl, 13

C

case, 9

casex, 9

casez, 9

Comments, 2
Concatenation, 5
Conditional assignment, 12
Continuous assignment, 12

D

Data operators, 4

Data strings, 3

Data types, 3

Dataflow model, 5, 12
example, 13

default, 9

E

end, 8

endcase, 9
endmodule, 3, 5, 6
Event control, 7

Digital Logic and Microprocessor Design with Verilog

Page 15 of 16

F
for, 10
function, 10
|
Identifiers, 2
if, 9
inout, 3, 5, 6
input, 3,5, 6
M
module, 5, 6

parameter, 6
Multiplexer, 3,5, 6, 7

N

nand, 13
negedge, 8
nor, 13
not, 13
notif0, 13
notifl, 13
Number, 3

O

or, 13
output, 3,5, 6

P

posedge, 8
Primitive gates, 13

S

String, 3
concatenation, 5

Structural model, 6, 13
example, 14

\Y,

Verilog
Basic language elements, 2
Behavioral model, 5, 7
Dataflow model, 5, 12
Structural model, 6, 13
Verilog syntax
@. See Event control
{ }. See String concatenation
always, 7

Last updated 3/8/2006 1:11:00 PM

Appendix D — Verilog Summary

and, 13
assign, 12
begin, 8
buf, 13
bufif0, 13
bufifl, 13
case, 9
casex, 9
casez, 9
Comments, 2

Conditional assignment, 12
Continuous assignment, 12
Data operators, 4

Data types, 3

default, 9

end, 8

endcase, 9

endmodule, 3, 5, 6

Event control, 7

for, 10

function, 10

Identifiers, 2

if, 9

inout, 3, 5, 6

input, 3,5, 6

module, 5, 6

Digital Logic and Microprocessor Design with Verilog

Page 16 of 16

parameter, 6
nand, 13
negedge, 8
nor, 13
not, 13
notif0, 13
notifl, 13
or, 13
output, 3, 5, 6
posedge, 8
Primitive gates, 13
String, 3

concatenation, 5
while, 10
xnor, 13
xor, 13

Verilog syntax:, 3

W
while, 10

X

xnor, 13
xor, 13

Last updated 3/8/2006 1:11:00 PM

	Contents
	Verilog Summary
	D.1 Basic Language Elements
	D.2 Behavioral Model
	D.3 Dataflow Model
	D.4 Structural Model
	Index

